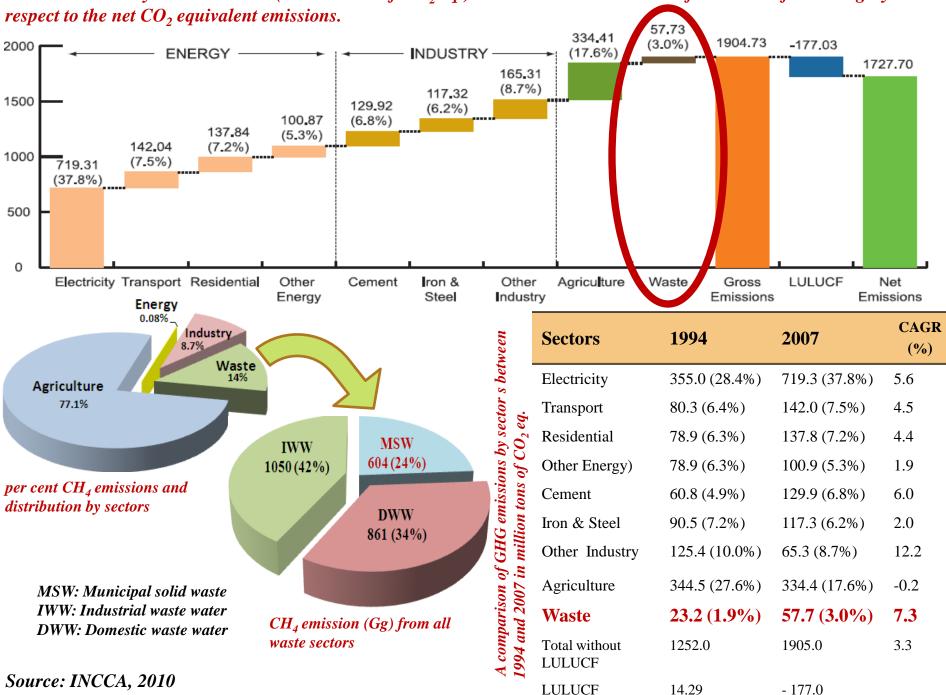
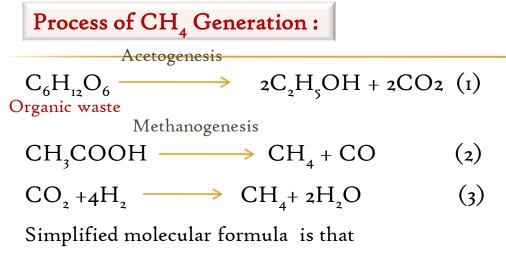
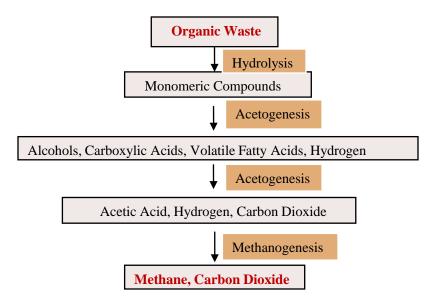
INTERNATIONAL WORKSHOP ON 'CHANGING CHEMISTRY IN CHANGING CLIMATE : MONSOON - C4: MONSOON'

Methane Emissions from Landfills


Chhemendra Sharma

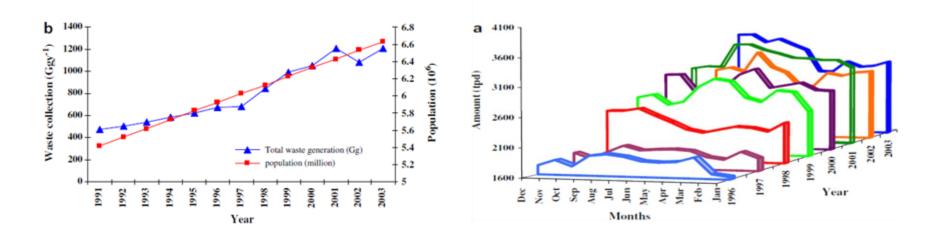
Principal Scientist Radio & Atmospheric Sciences Division CSIR-National Physical laboratory New Delhi – 110012 Email: csharma@nplindia.org




- Landfill is the site for the disposal of waste materials by burial and it is oldest method for waste management.
- ✓ Landfills gas (LFG) is produced in landfills due to the anaerobic digestion by microbes on any organic matter. Major constituents of LFG are: Methane (45 60%), Carbon Dioxide (40 50 %), Nitrous oxide (2 5%), Oxygen (0.1 1.0%), Ammonia (0.1 1.0%), Hydrogen (0 0.2%) and Volatile organic compounds (VOCs)
- ✓ It is estimated that world-wide CH_4 generation from landfills is about 10% (~36Tg) of all anthropogenic sources (USEPA-2006).

GHG emissions by sector in 2007 (million tons of CO₂ eq.) and brackets indicate % of emission of the category with

$$C_6H_{10}O_4 + 1.5 H_2O = 3.25 CH_4 + 2.75 CO_2$$



Major degradative steps during the anaerobic decomposition phase

Scenario of municipal solid waste management in four Indian mega cities

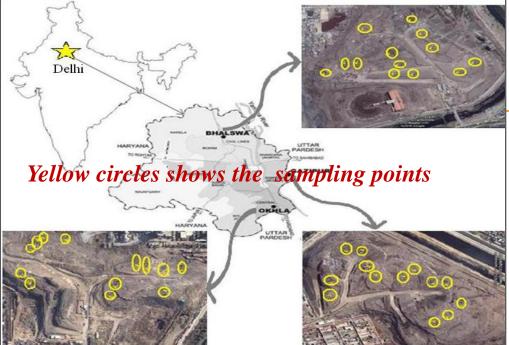
		Mega-cities			
Parameter	Year	Chennai	Delhi	Kolkata	Mumbai
Area (km2)		174.0	148.4	187.33	437·71
Population (million)	2001	6.56	12.87	13.2	16.43
Waste generation (kg /capita/d)	1994	0.66	0.48	0.32	0.44
	1999	0.61	I.I	0.55	0.52
Garbage pressure (tons /km²)	1999	17.529	4.042	16.548	13.708
Waste collection (Gg per day)	1999	3.124	5.327	3.692	6
	2009	3.036	5.922	2.653	5.32
Mode of disposal (%)	Landfilling	100	93	<u>80</u>	91
	Composting	-	7	20	9

Fig. (a) Variation in the daily MSW collection in different months from 1996–2003 in Chennai; (b) increase in MSW and population growth in Chennai. (Source: Jha et. al., Chemosphere 2008)

LANDFILL SITES IN DELHI

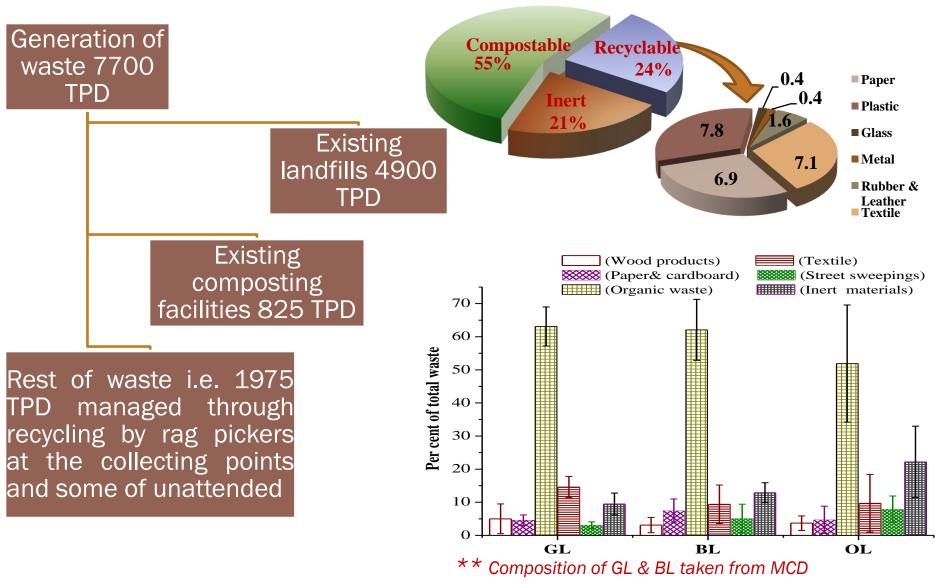
Ghazipur landfill (GL)

Focus: to reduce uncertainties in CH₄ emission estimations

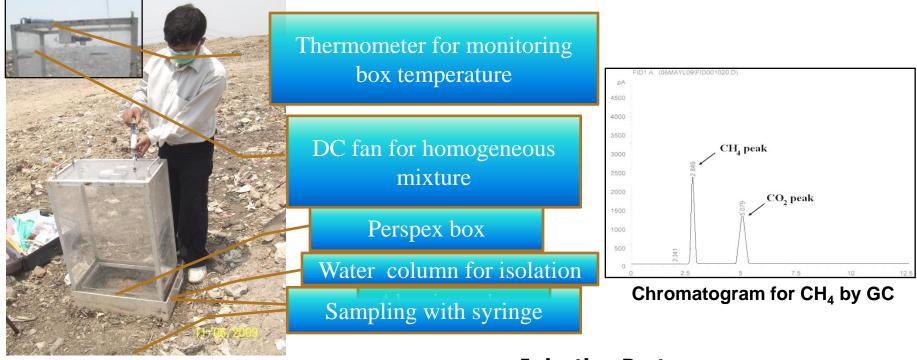


Bhalswa landfill (BL)

LANDFILL SITES IN DELHI


(Focus: to reduce uncertainties in CH₄ emission estimations

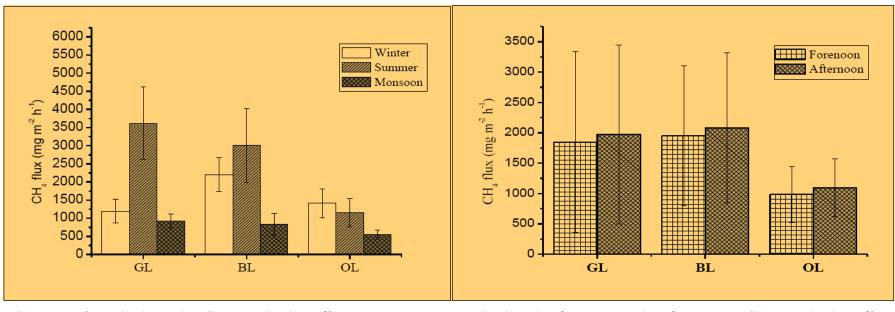
Salient features of Delhi's landfills


Characteristics	Ghazipur (GL)	Bhalswa (BL)	Okhla(OL)
Location	28° 37' 22.4" N, 77° 19' 25.7" E	28 [°] 44'27.16" N, 77 [°] 9'27.92" E	28 [°] 30'42" N, 77 [°] 16' 59" E
Starting year	1984	1992	1996
Area (Ha)	29.62	26.22	16.89
Average height (m)	25.5 - 30.5	18	27-40
Dumping quantity (TPD)	2200	1500	1200
Waste management facility	Daily spreading and compaction	Basic systems, irregular leveling and compaction	Regular covering with C & D waste and compaction
LFG collection system	No gas collection system and no composting plant	No gas collection system but composting plant	Currently not operational, only composting plant
Type of waste	Household, animal waste from	Household, vegetable	Mainly household with
	poultry, fish market &	market, C& D waste	C&D waste
	slaughter house		

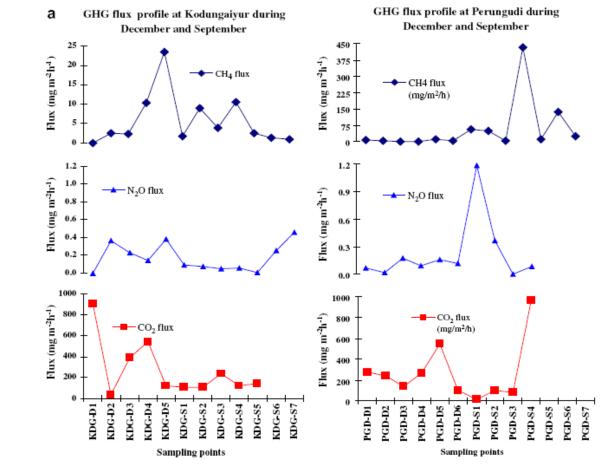
WASTE QUANTIFICATION & COMPOSITION :



* Composition of OL is personnel communication


SAMPLING & ANALYSIS

METHANE FLUX ESTIMATION


Seasonal variations in CH₄ emission flux

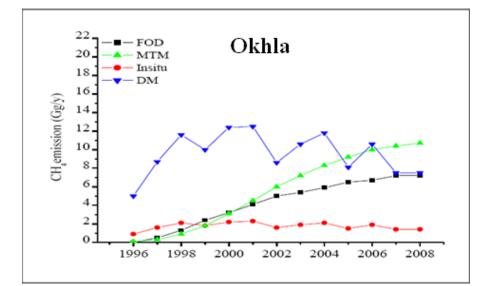
Variation in forenoon & afternoon CH₄ emission flux

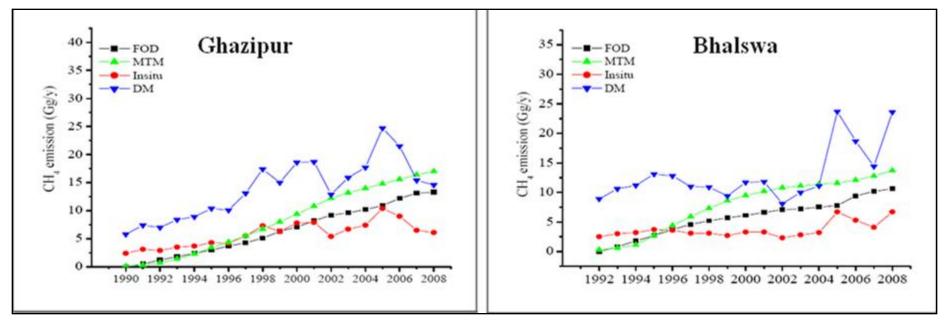
Seasonal & average CH_4 emission flux values for Delhi's landfills

Landfills	Seasonal CH ₄ emission fluxes (mg m ⁻² h ⁻¹)			
	Winter	Summer	Monsoon	Average flux
GL	1197±325	3617±994	919±199	1911±506
BL	2201±472	3006±1021	834±294	2014±596
OL	1411±404	1154±394	557±123	1041±307

VARIATIONS IN EMISSION FLUXES IN CHENNAI LANDFILLS

PGD = Perungudi, KDG = Kodungaiyur, D = December, S = September [Source: A.K. Jha et al. / Chemosphere 71 (2008) 750–758]


CH_4 EFs & estimations for Delhi's Landfills and its comparison with earlier reported estimations


	Reported CH₄ emission		in-situ method	
Landfills	Methodology/ Reference	Estimate (Gg y ⁻¹)	CH₄EF (g/ kg of waste)	CH₄ emission Gg)
Ghazipur			9.7±2.6	4.6±1.2
Bhalswa	In-situ/ Sahu et al., (2000)	2.4	5.5±1.6	4.2±1.3
Okhla	In-situ/ Kumar et al., (2004)	1.78	5.5 ±1. 7	1.4±0.4
Total CH ₄ es	stimations			10.2±2.9

TIME SERIES COMPARISON BY USING DIFFERENT METHODOLOGIES

Methodologies Used

- 1. IPCC 1996 default method (DM)
- 2. IPCC First order decay (FOD-IPCC, 2006)
- 3. Modified triangular method (MTM)
- 4. In-situ CH₄ Measurement (In-situ)

MAIN FINDINGS OF DELHI'S LANDFILL STUDY

★ The average CH_4 flux values have been estimated from Delhi's landfills as **1911±506**, **2014±596** and **1041±307 mg m⁻² h⁻¹** for Ghazipur (GL), Bhalswa (BL) and Okhla (OL) landfills.

✤ The CH₄ EFs for Delhi's landfills are 9.7±2.6, 5.5±1.6 and 5.5±1.7 Gg for GL, BL and OL respectively.

* The CH_4 emissions are estimated as 4.6 ±1.2 , 4.2±1.3, 1.4±0.4 Gg for GL, BL and OL respectively.

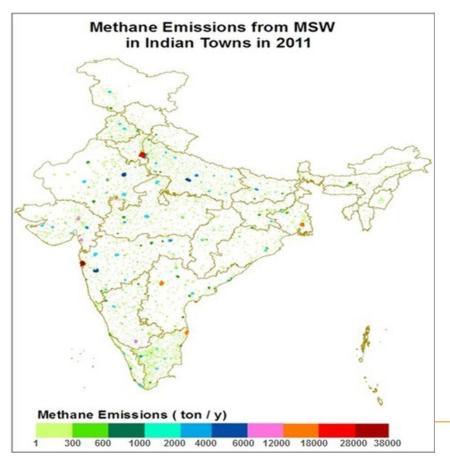
*****Total CH_4 emission from Delhi's landfills is **10.2±2.9 Gg**.

\diamond Comparison with different methodologies for CH₄ emission estimations reveals that in-situ measurement gives the lowest estimation whereas FOD method yields comparable estimations.

KNOWLEDGE GAPS IN DEVELOPING NATIONAL LEVEL EMISSION INVENTORY FOR EMISSIONS FROM LANDFILLS

Activity Data

- ✓ Class wise cities' MSW generation rates
- ✓ Collection efficiencies in different cities
- \checkmark Compositions of MSW in different cities


Management practices of Municipalities

✓ Compaction activity, soil covering , leachates collection etc.
 ✓ Activities of rag pickers

Other issues

- ✓ Landfill characteristics, topography etc.
- ✓ Climatic conditions
- Physico-chemical and biological properties of MSW

Development of City-wise methane emission estimates in India using FOD method

India for 2011	
No. of Cities	CH ₄ Emissions (Gg/y)
7	136
475	275
493	43
1383	51
2825	39
2774	26
7957	570
	No. of Cities 7 475 493 1383 2825 2774

City wise CH₄ emission estimation from landfills in

This value is lower than the reported CH_4 emission value from Indian landfills (604 Gg/y) for 2007 (India's SNC) due to incorporation of corrections related to city wise MSW collection efficiencies, waste composition and representative decay constant value. Contributions: Monojit Chakraborty Prabhat K. Gupta

Thanks for the attention