

Role of the Asian Monsoon in stratosphere – troposphere exchange

Martin Riese Forschungszentrum Jülich, Germany

May 1, 2013 | C4 Workshop Pune

Content

- Importance of Upper Troposphere /
 Lower Stratosphere (UTLS) composition
- Stratosphere troposphere exchange and the role of the Asian Monsoon
- Uncertainties in the atmospheric mixing strength
- Summary

Upper Troposphere /Lower Stratosphere (UTLS)

IÜLICH

 Improved predictions of chemistry-climate models (CCMs) rely on a realistic representation of the physical and chemical processes

Water vapor sensitivity to UTLS processes

Track length in km

- The H₂O feedback amplifies the radiative forcing of anthropogenic greenhouse gases by a factor of ~2.
- Uncertainties of ~20% result from our limited understanding of processes controlling H_2O in the UTLS.

Composition change in the UTLS has a great impact on surface climate via radiative couplings

Surface temperature sensitivity to H₂O, O₃, & CH₄ perturbations

Radiative Effect / Molecule Change [relative units]

Important to quantify processes controlling UTLS composition!

Content

- Importance of Upper Troposphere /
 Lower Stratosphere (UTLS) composition
- Stratosphere troposphere exchange and the role of the Asian Monsoon
- Uncertainties in the atmospheric mixing strength
- Summary

Stratosphere – Troposphere exchange

 Bi-directional isentropic transport between the TTL and the extra-tropical LMS

Horizontal transport from the extra-tropical LMS into the TTL

CLaMS O₃, 380 K (~15 km), JJA (2002–2010) O₃ (ppbv)

Konopka et al., 2009; 2010

- Transport of air at the edge of the anti-cyclone towards the equator.
- This transport has a strong influence on the composition of the TTL.

Horizontal transport structure also evident in MLS satellite data

CLaMS smoothed with MLS AVK MLS

Konopka et al., 2009

Transport of water vapour from the tropical UT into the extra-tropical LMS

CLaMS H₂O simulation at 18 km altitude from July until Dec'03

- Upward transport during summer in the region of the AM
- Important for propagation of moisture towards higher latitudes.

MLS water vapour climatology at 360K

Plöger et al., submitted

Water vapor mixing ratio [ppmv]

 Convective uplift by Asian monsoon important for moistening the tropical upper troposphere (NH)

Propagation of moist air (390 K) into the extra-tropical LMS

 \bigstar good agreement CLaMS \Leftrightarrow MLS

IÜLICH

- ★ highest H₂O in subtropics
- ★ NH moistened in summer/fall

Effect of artificial transport barriers in CLaMS

 Annual cycle vanishes with transport barrier at 40^oN

Quasi-horizontal water vapor transport

 The monsoon represents an important pathway in the extra-tropical LMS (in combination with the subtropical jet and Rossby-wave breaking)

Water vapour and ozone changes at middle latitudes (LMS)

 Anti-correlation of fast changes reflects dominant influence of horizontal transport from the extra-tropics

CLaMS (aso)

The influence of horizontal transport extends up to 450K in NH summer/fall

Content

- Importance of Upper Troposphere / Lower Stratosphere (UTLS) composition
- Stratosphere troposphere exchange and the role of the Asian Monsoon
- Uncertainties in the atmospheric mixing strength
- Summary

Impact of transport schemes on simulated H₂O

Stenke et al., 2008

Mitglied in der Helmholtz-Gemeinschaft

Semi-Lagrangian scheme too diffusive in this case.

Corresponding uncertainties in surface climate

Differences in surface temperature

- Different transport schemes result in large differences in H₂O and O₃ (UTLS)
- Large differences in temperature, in particular, at high latitudes

Physically based mixing scheme of CLaMS

Deformation described by Lyapunov coefficient

Definition: (Lyapunov exponent)

$$\lambda_{\pm} = \pm \frac{1}{\Delta t} \ln \frac{r_{\pm}}{r_0}$$

for sufficiently small Δt and r_0

Mixing introduced, if critical coefficient exceeded!

Best consistence between observed and simulated trace gases (and correlations) for λ_c between 1.2 and 1.5 day⁻¹.

CLaMS trace gas climatologies ($\lambda = 1.5 \text{ day}^{-1}$)

Riese et al., JGR, 2012

Mitglied in der Helmholtz-Gemeinschaft

Uncertainties resulting from mixing strength

Difference between enhanced mixing ($\lambda = 1.2 \text{ day}^{-1}$) and reference run ($\lambda = 1.5 \text{ day}^{-1}$)

IÜLICH

Associated radiative effects (uncertainties)

- Radiative effects of trace gases with steep gradients in the UTLS (H₂O, O₃) are very sensitive to uncertainties in process representation in models !
- Radiative effects (uncertainties) as large as radiative forcing by anthrop. GHG since 1980.
- Radiative effects of well-mixed in the UTLS (N₂O, CH₄, ...) are very insensitive (2mWatt/m⁻²)

Radiative effects (uncertainties) at extra-tropical latitudes

Summary

- The UTLS plays an important role in the climate system.
- Quantifying the processes that control UTLS composition (e.g. STE) represents a crucial task.
- The Asian Monsoon significantly influences TTL composition by horizontal equatorward transport at the edge of the upper-level anticyclone
- In addition, transport by the monsoon has a significant impact on the water vapour budget in the extra-tropical LMS

Summary (cont.)

- The concentrations of water vapor and ozone, both characterized by steep gradients, are particularly sensitive to uncertainties in the atmospheric mixing strength.
- The corresponding radiative effects (uncertainties) are quite high (of the order of 1 Watt/m²).
- For ozone, the largest impact of mixing uncertainties is found in the extra-tropical lower stratosphere.

Comparison of MLS with CLaMS (ASO)

- CLaMS provides reliable results on UTLS water vapour.
- The model can therefore be used for studies of underlying processes

★ Isentropic zonal mean H₂O continuity eqn.

Mitglied in der Helmholtz-Gemeinschaft

★ extratropical H₂O max: hor. resid. circulation @ lat \leq 50°N hor. eddy mixing @ lat \geq 50°N

CRISTA-NF on Geophysica

CRISTA-NF during RECONCILE (FP 7)

CRISTA-NF flight between Svalboard and Kiruna on March 2, 2010

~ 17 km

~ 15 km

Mixing area of polar air (high PV, red) and mid-latitude air (low PV, green) !

Mitglied in der Helmholtz-Gemeinschaft

- •No large impact on structures (simulations of episodes) !
- Significant impact on the background atmosphere (multi-annual simulations) !

Kalicynski et al., in prep.

H₂O transport into the extra-tropical lowermost stratosphere (LMS)

IÜLICH

Mitglied in der Helmholtz-Gemeinschaft

