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Combining Air Quality and Meteorology Modeling
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Modeling Aerosol Feedbacks at Local/Regional
Scales
(Radiation)
Direct effects
(cloud formation, CCN)
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WRF-Chem model (including aerosol feedbacks)
Case studies: Delhi, Beijing, California and Chile



High Aerosol Loadings and Strong Radiative
Forcings with Diurnal Variations Driven by
Emissions and Boundary Layer Dynamics
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Strong surface dimming due to primary
and secondary aerosols are found (> 60
W/m?)
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Strong Sensitivity of Surface
Concentrations to Feedbacks
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A Growing Number of Case Studies Suggest
Including Feedbacks Improve Predictions

: (Radiation)

(cloud formation, CCN)

If well )
oredicted / Indirect effects § improved
Emission

Aerosols Key chemical mechanisms (e.g. SOA etc.) Meteorology

\ But large uncertainties in prediction of aerosols J
eImproving predictions requires better forward models and

constraining models with observations
*Not a great amount of experience in chemical data assimilation
in coupled AQ/Met Prediction
*Our approach develop techniques in the on-line WRF-Chem
model with feedbacks (direct & indirect) between aerosols and
meteorology
- First step embed in operational 3d-Var system --- GSI
(Gridpoint Statistical Interpolation)



Adding AOD assimilation g >

-130

e Gridpoint Statistical Interpolation (GSI) can perform
simultaneous DA of different datasets (e.g. ground
PM2.5 and AOD)

e First, need to add MOSAIC (sectional) AOD assimilation
(just GOCART before) in GSI:

— AOD and sensitivities computed with WRF-Chem optical
averaging routine (Mie code + Internal Mixture) and its
adjoint (TAPENADE)

— Aerosol water computed as in MOSAIC (use electrolytes)

— Add correlation between bins sizes by using smoothing
filters

— Simultaneous assimilation of various AOD products
(total and fine AOD OR AOD at multiple wavelengths)

Ref: Schwartz et al., JGR 2012, Liu et al., JGR 2011, Fast et al., JGR 2006
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Case Study — California CALNeX:
Forward Model Prediction (Monthly Mean) May 2010
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Assimilating Different AOD Products
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Assimilation using this Method affects Vertical
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Next Steps

7
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* AOQOD retrievals provide information
to constrain aerosol mass.

* But in many regions there is a lack of
AQOD information.

 However cloud retrievals contain

information on aerosols. MODIS fine AOD CA
22 Jun 2008) ,
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Opportunity

'*  SEP marine Sc N,
satellite retrievals show
evidence of aerosol
load and agree with
observations

e Aerosol indirect effects
simulated with some skill

in WRF-Chem (in coastal
marine environemnts)

* Hypothesis: variational
assimilation with N
retrievals can improve
below-cloud aerosols in
models
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We've developed a technique to assimilate cloud
satellite retievals to constrain aerosol
distributions
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N, changes during the
Model N & N forecast due to activation
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Assimilation results: + & - biases ~
reduced

WRF-Chem WRF-Chem

e Assimilate
MODIS Terra N4

e Aerosol mass
and number are
changed
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Conclusions and future work

Cloud (N,) assimilation

- A data assimilation method to improve below-cloud accumulation aerosol using
cloud retrievals is developed and tested, showing improvement vs. satellite and
in-situ observations with up to 48 hours influence

— This technique can be now used within the GSI assimilation system
Coupling cloud (N4) and AOD assimilation

- Development of GSI MOSAIC AOD with positive results, incorporating fine AOD
OR total AOD at different wavelengths

Future work

- Include surface aerosol information in the assimilation (e.g., PM2.5) — use in
SAFAR & include assimilation of surface winds

- Compare N4y +AOD assimilation to in situ data (ARCTAS-CARB, CALNEX)
— Include products from other platforms (other LEO and GEO AOD, AAOD)

- Analyze effect of assimilated aerosol on meteorology and chemistry through
WRF-Chem aerosol feedbacks

- Moving forward with full adjoint WRF-Chem for use in 4dVar applications
including emission estimates.
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