Alternative Atmospheric Convection Schemes in a Coupled Model: Reforecast Tests with CFS

Jim Kinter

COLA George Mason University

Rodrigo Bombardi, Larry Marx

Many thanks to: Julia Manganello (COLA), Ahmed Tawfik (NCAR), and Marat Khairoutdinov (Stony Brook)

> INTROSPECT Pune, India 14 February 2017

Photo credit: Indian Express © 2016

Motivation

- Clouds and convection are known to be among the largest sources of model uncertainty in current generation coupled oceanatmosphere and Earth system models.
- The deficiencies in modeling convection may be broadly characterized as errors in:
 - Triggering convection
 - Development and equilibration of convection
 - Microphysical processes
 - or a combinations of these
- Tests of alterations to convection in reforecasts have been conducted with the NCEP Climate Forecast System using alternative parameterizations that:
 - Change the trigger mechanism for convection OR –
 - Include the vertical motion in clouds explicitly to provide a better representation of the development of convective clouds

Radiative Forcing of Climate Between 1750 and 2011

Forcing agent

Based on IPCC AR5 WGI, 2013

Climate models are very sensitive to how shallow convective clouds (top ~ 2.5 km) are coupled to the larger-scale circulation, the vertical distribution of water vapor, the surface turbulent fluxes and atmospheric radiation.

-- Bony et al. 2015

Motivation

- Clouds and convection are known to be among the largest sources of model uncertainty in current generation coupled ocean-atmosphere and Earth system models.
- The deficiencies in modeling convection in climate models may be broadly characterized as errors in:
 - Triggering convection (e.g. diurnal cycle of p_{max} too regular, too early)
 - Development and equilibration of convection; linkage to large-scale
 - Microphysical processes; linkage to radiation
 - Combinations of these
- Tests of alterations to convection in reforecasts have been conducted with the NCEP Climate Forecast System (CFSv2) using alternative parameterizations that:
 - Change the trigger mechanism for convection OR –
 - Include the vertical motion in clouds explicitly to provide a better representation of the development of convective clouds (SP)

Climate Forecast System version 2 (CFSv2)

- Global coupled model: Atmosphere, Ocean, Land Surface, Sea Ice
- Atmosphere: based on the NCEP Global Forecast System (GFS) used for global numerical weather prediction
 - spectral discretization at T126 resolution (~100 km grid spacing)
 - 64 vertical levels
 - SAS (Han and Wu 1995; Hong and Pan 1996) cumulus parameterization
- Ocean: Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 4 (MOM4)
 - 1/2° horizontal grid spacing; 1/4° meridional grid spacing in the tropics
 - 40 vertical levels
- Land Surface: Noah (GFS grid)
- Sea Ice: a modified version of the GFDL Sea Ice Simulator (MOM4 grid)

Convective Cloud Parameterization: The Simplified Arakawa-Schubert (SAS) Scheme

Source: MetEd http://www.meted.ucar.edu/nwp/pcu2/avncpl.htm

NCEP Column Physics

	SAS	NewSAS	
Operational model:	CFSv2 (2010)	GFS (2013+)	
Cloud Scheme	Turbulent diff. shallow convection Mass flux DC (Hong & Pan 1996)	Mass flux shallow & deep (Han & Pan 2011)	
PBL	Troen & Mahrt 1986	Lock et al. 2000	
Entrainment/ detrainment	Quasi-equilibrium (Arakawa & Schubert 1974 cloud work function), saturated downdraft (Grell 1993)	Bechtold et al. 2008	
Cumulus momentum transport	None	Han & Pan 2006	
Deep convection trigger	CSL – LFC <= 150 hPa	120 <= CSL - LFC <= 180 f(large-scale ω)	

 $CSL = convection starting level = MSE_{max} level LFC = level of free convection$

Alternative Trigger: Heated Condensation Framework

- Quantify how close atmosphere is to moist convection
- Does not require parcel selection
- Uses typically measured quantities (q and θ profiles)
- Is "conserved" diurnally
- Can be used any time of year or any time of day and interpretation stays the same

Heated Condensation Framework

Heated Condensation Framework

Threshold Variables:

BCL = Buoyant Condensation Level [m] θ_{BM} = Buoyant mixing temperature [K]

 $\begin{array}{c} \textit{Convection is initiated when:} \\ \textit{PBL} \textit{ intersects } \textit{BCL} \\ \theta_{2m} \textit{ reaches } \theta_{BM} \end{array}$

(Tawfik and Dirmeyer 2014 GRL)

Surface-Convection Coupling

Surface-Convection Coupling

Surface-Convection Coupling

Heated Condensation Framework (HCF)

The HCF was designed to better couple land surface fluxes and column physics and avoid parcel method.

SkewT-LogP diagram of **temperature (black)** and **dew point (blue)** illustrating the steps to calculating the conditions for triggering convection.

Tawfik and Dirmeyer (2014)

INTROSPECT 2017 :: IITM :: Pune, India :: February 2017

Experiments

Exper- S iment	Simulation Length	Number of Years/ Events	Range of Years	Number of Members per Year/ Event	Initialization Date	Spatial Resolution		Temporal	Model
						ATM/LS	OCN/Sea ice	- Resolution	Filysics
CTRL	7 months	13	1998 - 2010	4	April 1,2,3,4	T126/L64	0.5-degL40	Daily	Operational
HCF	7 months	13	1998 - 2010	4	April 1,2,3,4	T126/L64	0.5-degL40	Daily	Operational + HCF trigger
CTRL2	7 months	13	1998 - 2010	4	April 1,2,3,4	T126/L64	0.5-degL40	Daily	New SAS + Shalow Cu
HCFv2	7 months	13	1998 - 2010	4	April 1,2,3,4	T126/L64	0.5-degL40	Daily	New SAS + Shalow Cu + HCF trigger
CTRL2	l month	24	-	7	[Landfall, - I ,, -6]	T382/L64	0.5-degL40	6-hourly	New SAS + Shalow Cu
HCFv2	I month	24	-	7	[Landfall, - I ,, -6]	T382/L64	0.5-degL40	6-hourly	New SAS + Shalow Cu + HCF trigger

Bombardi et al. 2015 "**B15**" (Trigger criteria relaxed) (SAS *or* HCF) Bombardi et al. 2016 "**B16**" (Trigger criteria restricted) (HCF in place of NewSAS trigger)

Experiments:

- Seasonal Runs: 4 members per year (1998 2010). Starting on April 1,2,3, 4
- Short Runs: 4 members per year (1998 2010). Starting on July 14,15,16,17
- Hurricane Runs: 7 members per event. Starting daily for 7 days before landfall

Exp. Name	Туре	# of years/ events	# of members	Horizontal Resolution	Temporal Resolution	Trigger Criteria	
CTRL	Short (~2 weeks)	13	4	T126 (~1.0 deg.)	3-hourly	Original	
	Seasonal (7 months)	13	4	T126 (~1.0 deg.)	Daily	(pressure	
	Hurricanes (30 days)	24	7	T382 (~0.31 deg.)	6-hourly	difference)	
HCFv2	Short (~2 weeks)	13	4	T126 (~1.0 deg.)	3-hourly		
	Seasonal (7 months)	13	4	T126 (~1.0 deg.)	Daily	HCF	
	Hurricanes (30 days)	24	7	T382 (~0.31 deg.)	6-hourly		

Seasonal Precipitation

INTROSPECT 2017 :: IITM :: Pune, India :: February 2017

Precipitation over Central India

Problem:

Dry precipitation bias over India caused by too much light rain & not enough intense precipitation

Dataset: TRMM precipitation

Period: 1998 - 2010

BI5 Mechanism:

By allowing the model to trigger convection more often there was a reduction in light precipitation and an increase in heavy precipitation.

Bombardi et al. (2015)

- BI5: HCF trigger as alternative condition (CFSv2 operational)
- Old SAS triggers more often → increase in the Summer Indian Monsoon Rainfall → Improvement of rainy season onset date.

Bombardi et al. (2015)

- BI6: HCF trigger replaces original trigger (HCFv2)
- New SAS triggers less often → also changes Summer Indian Monsoon Rainfall and rainy season onset date

Bombardi et al. (2016)

B16 Convective Trigger Criteria \rightarrow DYNAMO Soundings

INTROSPECT 2017 :: IITM :: Pune, India :: February 2017

Hurricane Track & Intensity

7 members initialized daily for the 7 days leading to landfall **0** = IBTracks; Black circle = hindcast start; color = intensity

CFSv2 T382 CTRL and IBTrACS, Tracks of Katrina (2005), Mslp (hPa)

Hurricane Name	Year	Hurricane Name	1 Year	
Arthur	2014	Isabel	2003	
Sandy	2012	Floyd	1999	
Irene	2011	Georges	1998	
Ike	2008	Bonnie	1998	
Gustav	2008	Fran	1996	
Dean	2007	Emily	1993	
Wilma	2005	Andrew	1992	
Katrina	2005	Bob	1991	
Emily	2005	Hugo	1989	
Ivan	2004	Gilbert	1988	
Frances	2004	Charley	1986	
Catarina	2004	Gloria	1985	

CFSv2 T382 HCF and IBTrACS, Tracks of Katrina (2005), MsIp (hPa)

Courtesy of Julia Manganello

60N

45N 40N

35N 30N

25N

20N 15N

10N

5N

Simulating Hurricanes at T382 (~38 km) With and Without B16 Trigger

Mechanisms

The **BI6** HCF trigger activates the convective scheme less frequently

- increasing convective instability
- allowing the PBL to moisten and grow higher
- Increasing precipitation, shallow and convective clouds
- releasing latent heat intensifying hurricanes

Shading or stars = statistically significant at 5% level

2 -

Bombardi et al. (2016)

Summary: Convective Trigger

The HCF trigger produces different results in representing convection in hurricanes vs. that during the Indian Summer Monsoon, because there are two different problems in CFSv2.

- For monsoon rainfall, the model produces too much light precipitation and too little intense precipitation.
 - ✓ By allowing the convective scheme to trigger more often, more precipitation is generated and the dry bias is reduced.
- For hurricanes, the model produces too much convection.
 - ✓ By inhibiting the activation of the convective scheme, convective instability can build up, resulting in intensification of hurricanes.
- May be moot with advent of unified schemes that handle PBL, SC and DC, but triggering frequency is valuable metric

Superparameterization and CFS

- Preliminary tests with a superparameterized version of CFSv2 were conducted
- Many thanks to Marat Khairoutdinov for essential assistance with implementation
- Very limited number of cases of landfalling hurricanes (Sandy 2012; Katrina 2005; Floyd 1999; and Bonnie 1998) – 3-week forecasts
- Comparison with OBS and T382 control runs (NewSAS)

Precipitation

CFS

Sharper features; more spatial intermittency

Hour 144; T126 host resolution

INTROSPECT 2017 :: IITM :: Pune, India :: February 2017

Total Cloud Cover

CFS

Increased low cloud in

tropics & sub-tropics

Hour 144; T126 host resolution

INTROSPECT 2017 :: IITM :: Pune, India :: February 2017

Superparameterization and CFS

- Preliminary tests with a superparameterized version of CFSv2 were conducted
- Many thanks to Marat Khairoutdinov for essential assistance with implementation
- Very limited number of cases of landfalling hurricanes (Sandy 2012; Katrina 2005; Floyd 1999; and Bonnie 1998) – 3-week forecasts
- Comparison with OBS and T382 control runs (NewSAS)

SP Comments

- Very early assessment too few cases, too short forecasts, different host model resolutions → caution required for interpretation
- Some robust features:
 - Substantially different structures of precipitation
 - More shallow clouds in tropics and subtropics
- Negative impact on precipitation bias in monsoon region, ITCZ → more tuning needed (in contrast with SP-CAM experience)

Parting Thoughts

- Parameterized clouds and convection are a major source of error and uncertainty in current generation climate models
- There is considerable potential for convection-permitting, cloud-resolving and scale-aware schemes that remains to be rigorously tested in coupled climate simulation and prediction
- Attention should be paid to several aspects of convection that are all potentially important – initiation, development and equilibration, and coupling with the dynamics
- Experiments with alternative trigger algorithms that are either more or less restrictive suggest that there are substantial gains to be made in improving the onset of convection
- **Super-parameterization** (MMF) provides an interesting intermediate solution but the experience in different models varies
- Metrics include: diurnal cycle of P_{max}, histogram of P intensity, convection triggering frequency, connection to large scale (e.g. level of Q_{max}), and spatial (land/ocean, tropics/extratropics, decorrelation scale), and temporal distributions (propagating features, seasonal mean, monsoons) of rainfall

