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Challenges

» Predicting European weather a month ahead
(“beyond ten days”)

» Understanding the influence of the tropics on
global weather

» Understanding the influence of the stratosphere
on the troposphere during winter

» Describing the interactions between

atmosphere, oceans, sea-ice, land surface and
composition
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EU summer heatwave 2-4 week ahead
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ECMWEF 2016-2025 strategy: overview

* Focus on high-impact weather, regime transitions and global-scale anomalies
» Integrated ensemble at high resolution at 5km by 2025

Performant Earth-System model and analysis which includes relevant processes (variables/observables)
=; with an estimate of process/model uncertainty

» Scalable computation
» Environmental information services: Copernicus

Y
Nl ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS




IFS components (as of Oct 2016)
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Improvement in cloud cover skill — the last decade

Skill relative to ERA-Interim (%)
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See also Haiden et al (2015) ECMWF Newsletter 143
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Evolution of skill of the HRES forecast at day 5, expressed as relative skill
L5 ECMWEF compared to ERA-Interim (12 month running mean)



Observation changes: the rise of all-sky!

All-sky assimilation of humidity GMI and AMSR-2
sounding channels on SSMIS added in all-sky
40 T T T T T T T T T
L —— Mw T »  Growing importance of microwave
BpF —— I(?Ps humidity observations
S Alrcraft (MHS, ATMS, MWHS-
o J—— Seat 2, SSMIS, AMSR2, GMI, SAPHIR).
25 : : :
— >Q /\f/\‘ N « Extending this to infrared water
S 20F \//\,\ /\\/\ vapour information.
2t Y/
15F /NG /’\_‘{\' * Reuvisiting all-sky microwave
. ~ temperature observations.
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Jul Jan  Jul |Jan  Jul Jan Jul Jan |Jul Jan| Jul (EarthCARE, Aeolus, GOES-R, MTG).
2012 2013 2014 2015 2016 F18, all-sky over snow, MWHS-2

ATMS and Metop-B MHS All-sky assimilation of all four
added in clear skies .
MHS (transferred from clear-sky)
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New observations

Number of satellite data products actively assimilated at ECMWF
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41r2: Resolution upgrade — 8 March 2016

41r1 = 41r2
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From T11279 (16 km) to TC01279 (9 km)

OROGRAPHY, GRID POINTS AND LAND_SEA MASK FOR Ne40 ORIGINAL GRID
orography shaded (height in m), land grid points (red), sea grid points (blue)

* Two grids use same
spectral truncation
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OROGRAPHY, GRID POINTS AND LAND_ SEA MASK FOR 0128 "OCTAHEDRAL GRID - ° SPZCTPGI fields, here the
orography shaded (height in m}, land grid points (red), sea grid points (blue) . or‘ogr‘ophay IOOk near‘ly

| 2 LI the same, but not quite
(more detailll) why?




Resolution upgrade: cubic grids->octahedral reduced Gaussian grid

2N+1 gridpoints to N waves : T, linear grid
4AN+1 gridpoints to N waves : T, cubic grid

Where T, refers to linear grid and T to cubic grid, respectively
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Mathematically more correct in the presence of cubic
non-linearities in the equations

Less numerical filtering — almost no numerical
diffusion, no dealiasing

Better mass conservation
Less expensive than the equivalent linear grid
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~8km) =8.5
million grid points per level
1279 ~9km) = 6.6

Co (cubic
million grid points per level
(octahedral cubic reduced Gauss.
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Improvements: ....

Strong reduction of spurious grid-scale rainfall events (LSP)
, : b - s =
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Improvements: resolve instabilities in Numerics (Advection)

« Instability in Numerics due to departure point calculation
in the semi-Lagrangian advection, leading to unrealistic
tropical cyclone structures

Tropical Cyclone Soudelor
Aug 2015
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Ocean surface currents at various resolutions
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Eddy resolving Eddy permitting Eddy parameterising
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Thermal coupling of ocean

Coupled ocean-atmosphere simulations are exposed to the problem
of initial shock as the Atmosphere and the rest of earth surface is
not yet in balance with the ocean.

Data assimilation 4D-VAR uses

OSTIASST

e 1/20 degree SST from OSTIA
1/4 degree SST from NEMO

1m OSTIA 1/20 deg (5km) SST field
— dynamic, ocean tendencies has details of the eddies not
uncertainties with resolved by ocean models
8-layer
in top

OSTIA SST 1/20 degree

ORCAO025 1/4 degree 10m
A
The PARTIAL COUPLING works well only OSTIA SST 1/20 degree is applied for 4
in the short range as ocean eddies are i
assumed statio?\ary days and then relaxed to 0 gradually taper- OSTIA SST il
FULL COUPLING uses the dynamic ocean down from day 4 to day 8
to advect eddies from day 0 From day 8 onwards FULL COUPLING NEMO SST,
# FULL-COUP.
c ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS Dayo Day4 Day8



Coupled ocean vs uncoupled simulation

Tropical cyclone Neoguri with TCo1279 (HRES)
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Day (July 2014)

Buoy observation
at 22°N, 128°E

4-day forecast SSTs from the coupled forecast initialised at OUTC on 6 July 2014 at
the location of a buoy with approximate position 22°N, 128°E.

(Rodwell et al, ECMWEF Technical Report 759, 2015)
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Lake model 2015, one of the new Earth System components

LAKE COVER FRACTION
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Forecast of 2m temperature are
improved in proximity of lakes and
coastal areas

Why also coastal areas, these are
not Lakes ?!...... cause before if land-
sea mask>0.5 then only land point

(Balsamo et al, ECMWF Newsletter 137, Tellus-A, 2012)
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A new and simple lightnin

parametrisation -

also for use In data assimilation

Simulated Li ing Flash Rates, multi-
Annual 1280-2
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Climatological AOD at 550 nm distribution
CAMS vs operational climatology (based on Tegen et al. 1997)

JJA CAMS

002 005 01 012 015 02 03 04 06 07 08
» Aerosol climatology computed using the CAMS-Interim reanalysis (Flemming et al. 2016)

« Some highlights:
— Larger Sea Salt radiative forcing (~1 W/m? more reflection at TOA over oceans)
— Changes in biomass burning seasonal cycle (up to 20 W/m? difference in total SW absorption locally)
— Changes in dust distribution, higher on Sahara and Taklamakan, lower on Indian Ocean and Australia

— Anthropogenic emissions lower over Europe, higher over E Asia

< ECMWF 19



And real time Analysis and Fc of Aerosols within
Copernicus Atmospheric monitoring system

Thursday 26 January 2017 00UTC CAMS Forecast 14003 VT: Thursday 26 January 2017 03UTC
Tota‘I] _IA.erosalu?ftical Dg?th at S&Eg nm
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Evaluating forecasts against observations

£ S 88 PRSI0 . CSET, the Cloud System Evolution in the Trades
3 . o | —July/August 2015 (University of
Washington and Miami)

: o .. 5 NARVAL (Next-generation Aircraft Remote
& sensing for Validation Studies)
— MPI-M (Dec 2013/Jan 2014)
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Ensemble and stochastic physics: Pattern generator
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Ensemble and stochastic physics: Perturbed parameter distributions

turbulent diffusion and subgrid oro. cloud and large-scale precipitation
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The Scalability Challenge T

| Vertical Grid (Height or Pressure)

| ﬂ-wl T
__ [Observations ______ IModels
Volume 20 million = 2 x 107 5 million grid points
_ 100 levels
Today: 10 prognostic variables = 5 x 10°
Type 98% from 60 different satellite physical parameters of atmosphere,
Instruments waves, ocean
__ [Observations _______ IModels
Volume 200 million = 2 x 108 500 million grid points
_ 200 levels
Tomorrow: 100 prognostic variables = 1 x 1013
Type 98% from 80 different satellite physical and chemical parameters of
instruments atmosphere, waves, ocean, ice,
vegetation
— Factor 10 per day — Factor 2000 per time step

(10-day forecast today = 1440 time steps,

==Y
—w ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS . . K i
but more time steps with increased resolution) 24



Simple compute projection (only resolution)
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(Bauer et al. 2015, Nature)

VY
Nl ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 25



Copernicus climate services:
Reanalysis provides a truly global view...

Arctic pattern of
temperature anomalies

Antarctic pattern of
temperature anomalies

ERA-Interim e ERA-Interim estimates for
2014 are slightly cooler than
those from station data alone

« Mainly due to the Antarctic

e Consistent with independent

& ECMWF  ERA-5 now underway




This leaves us with uncertainty in the uncertain times .......

= Dynamical core: spectral or Finite Volume Method

= Physics: which additional prognostic equations (in microphysics-convection, Ozone and dust+sea salt
aerosols coupled with radiation?

= Mult-layer snow scheme

=; » First wish of our satellite microwave assimilation people is to have “prognostic convective snow”

= Data assimilation: which hybrid method, continue with ensemble 4DVar (maintaining TL/AD model/ﬂf
veeery work intensive but still pays off)

=  Scalability

Y
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“Dry” evaluation of the FVM vs IFS

Dry baroclinic instability, FVM (0O640) versus the spectral IFS (Te639):

Finite-volume
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ppectral

£5° W 135" 18 |

C. Kuehnlein and P. Smolarkiewicz
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TCo01279 total column liquid water (12h simulation at 9 km)

(hydrostatic, with deep convection parametrization, 450s time-step, 240 Broadwell nodes, ~0.75s per timestep)

< ECMWF
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TC07999 total column liquid water (12h simulation at 1.3 km)

The latest spectral transform model news ...

(hydrostatic, no deep convection parametrization, 120s time-step, 960 Broadwell nodes, ~10s per timestep)

o
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