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Introduction (1)
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Introduction (2)

2017 was 25 anniversary of both NCEP
and ECMWEF global ensemble forecasts
into operational implementation




Introduction (3)

Description of the ECMWF, MSC and NCEP systems

Each ensemble member evolution is given by integrating the following equation
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Initial uncertainty ( Model uncertainty )

where ¢e,(0) is the initial condition, Pj(e,t) represents the model tendency
component due to parameterized physical processes (model uncertainty),
dP(e,t) represents random model errors (e.g. due to parameterized physical
processes or sub-grid scale processes — stochastic perturbation) and A (e, t) is the
remaining tendency component (different physical parameterization or multi-

del).
model) Operation: ECMWF-1992; NCEP-1992; MSC-1998

Reference: - first global ensemble review paper
Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2005:

"A Comparison of the ECMWEF, MSC, and NCEP Global Ensemble Prediction Systems
Monthly Weather Review, Vol. 133, 1076-1097
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Introduction (4)

Northern Hernisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130901 — 20140831
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Evolution of NCEP GEFS configuration (versions)

Version | Implem Initial TS Model Resolution Forecast Ensemble Daily
entation | uncertainty relocation uncertainty length members frequency
V1.0 1992.12 BV None None T62L18 12 2 O0UTC
V2.0 1994.3 T62L18 16 10(00UTC) | 00,12UTC
4(12UTC)
V3.0 2000.6 T126L28(0-2.5) 10
T62L28(2.5-16)
V4.0 2001.1 T126(0-3.5)
T62L28(3.5-16)
V5.0 2004.3 T126L28(0-7.5) 00,06,12,
T62L28(7.5-16) 18UTC
V6.0 2005.8 TSR T126L28
V7.0 2006.5 BV- ETR 14
V8.0 2007.3 20
V9.0 2010.2 STTP T190L28
V10.0 2012.2 T254L42 (0-8)
T190L42 (8-16)
V11.0 | 2015.12 | EnKF (f06) TL574L64 (0-8)

TL382L64 (8-16)




Introduction (5)

* An ensemble forecasting system 50-member GEFS forecast
ShOUId prOV|de |nf0rmat|0n on hOW Southern Hemisphere z500
much we can trust the forecast. 3“

error
---- spread

e This comes in the form of ensemble
spread, which ideally would be close
to the average error of the forecasts.

e Initial perturbed single modeling
ensemble systems (e.g. NCEP and
ECMWE) are generally over confident
(under dispersion) on their forecasts

5

Forecast lead time (days)



Introduction (5)

An ensemble forecasting system
should provide information on how
much we can trust the forecast.

This comes in the form of ensemble
spread, which ideally would be close
to the average error of the forecasts.

Initial perturbed single modeling
ensemble systems (e.g. NCEP and
ECMWE) are generally over confident
(under dispersion) on their forecasts

Stochastic Physics could improve this
relationship

20-member GEFS forecast
Southern Hemisphere z500

| ==--- spread

error

Forecast lead time (days)
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Stochastic Representation
of Physical Uncertainty

| EaBadase

Future

B

Major physical schemes:
T —total tendency Convection (shallow and deep)

D — dynamical tendency *  Clouds

_ . e Radiation
P — physical tendency . Gravity wave drag
e — random pattern (4-d) «  PBL

r — physical parameter * land-surface
e Others?

10



Model uncertainty in the operational GEFS

* Stochastic Total Tendency Perturbations (STTP)

Evolving
combination matrix

— Random linear combinations of 6-hour tendency
perturbations from the ensembles are applied to a
given member during the model integration

— Reference:
e Hou and et al, 2008

— STTP has less impact to tropical area

6-hr tendency Rescaling factor

11



Changes of NCEP Ensemble Spread (STTP)

Then Now

Average 00Z Ensemble Spread (Mar 2007 - Mar 2009) Average 00Z Ensemble Spread (Mar 2012 - Mar 2013)

168-h Forecasts of 500-mb Geopotential Height (n=745) 168-h Forecasts of 500-mb Geopotential Height (n=360)
ECMWF ECMWF

meters

GEFS/ECMWF

ratio ratio

1.06 1.06

1.00 1.00

0.94 0.94

0.88 0.88

0.82 0.82

0.76 0.76

0.70

0.70

12
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 Above schemes has been tested for current

Model uncertainty in the GFS DA (EnKF) cycle

Dynamics: Due to the model’s finite resolution, Kinetic Energy Spectrum

2

energy at non-resolved scales cannot cascade to a)
larger scales.
— Approach: Estimate energy lost each time step, and

inject this energy in the resolved scales. a.k.a stochastic
energy backscatter (SKEB; Berner et al. 2009)

Power Spectrum

Physics: Subgrid variability in physical processes,
along with errors in the parameterizations result
in an under spread and biased model. 1o 0 0
— Approach: perturb the results from the physical Rwhigrioot «
parameterizations, and boundary layer humidity

(Palmer et al. 2009), and inspired by Tompkins
and Berner 2008, we call it SPPT and SHUM

See next slide

operational GEFS (spectrum model) with
positive response — plan to replace STTP for
next implementation -




Examples of stochastic patterns
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Upper atmosphere:

Current Status of Global Ensembles

Spring 2016 — NH 500hPa height

Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20160301 — 20160531

+—+ NCEF
G—a CMC
o—a ECMWF

Spring 2016 — NH 2-m temperature

Northern Hemisphere 2 Meter Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20160301 - 201680531
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48-hour forecast
Assume analysis is a true reference

NCEP and EC forecasts are 1:2 (spread:error)
CMC forecast is 1:1.25 (spread:error)

Forecast days

4 & g 7 2 4 10 " 12 13 14 15
Forecast days

Surface elements:

Apply stochastic schemes and/or multi-physics ¢ Does not apply stochastic schemes
All ensemble forecasts have reasonable spread ¢ All ensemble forecasts have more/less under

compared to the errors

dispersion (over confident)
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Precipitation Forecast (1 year; 12-36hr; >5mm/24hr)
Reliability Diagram
fhr 12—36 For 20150301 — 20160229
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Spread-Error relationship
2015 TC track AL/CP/EP/WP
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appear for 2015 summer season

0 12 24 36 48 72 96 120

Forecast hours
CASES 1270 1162 1049 946 846 668 517 400



Stochastic Schemes for Atmosphere
- Testing for GEFS

Stochastic Kinetic Energy Backscatter (SKEB)
— Represents process absent from model

— Stream function is randomly perturbed to represent upscale kinetic
energy transfer (Berner et al., 2009)

Stochastic Perturbed Physics Tendencies (SPPT) — (ECWMF tech
memo 598)

— Designed to represent the structural uncertainty (or random errors) of
parameterized physics

— Multiplicative noise used to perturb the total parameterized
tendencies (Palmer et al., 2009)

— Biggest impact on tropic

Stochastically-perturbed boundary layer HUMidity (SHUM)
— The same formula as SPPT

— Designed to represent influence of sub-grid scale humidity variability
on the the triggering of convection (Tompkins and Berner 2008)

— Biggest impact on tropic


http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm598.pdf
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Change of ensemble spread from introducing new stochastic physics

New_STTP at 120 h Sto_Phys at 120 h
500-hPa U spread-skill 500-hPa U spread-skill

112 forecasts Ensemble Std Dev m/s 112 forecasts Ensemble Std Dev m/s

112 forecasts BRMSE of Ens Mean m/s

112 forecasts BMSE of Ens Mean
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Reliability Diagram
fhr 36—60 For 2013060100 — 2013093000
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NCEP Ensemble Forecast TC Trogk Vermcutmn. 2016092900 NCEP Ensemble Forecqsl TC Track Vermcntmn 20160.92900
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NCEP Ensemble Forecast TC Trqqk Verrﬂ;:utmn 2016092900
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GEFS week 3&4 forecasts (un-coupled)

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs
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Period: May 2014 — May 2016
Higher resolution (~50km) for week 3&4 with different SPs



GEFS week 3&4 forecasts (un-coupled)

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs
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GEFS week 3&4 forecasts (un-coupled)

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs
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RMSE(solid) and SPREAD{dash)

Tropical 850hPa U.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20150501 — 20151221
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New Stochastic Schemes for Land

Under development — test uncertainties for land model

e Stochastic Perturbed Tendencies of Land (SPTL) - EMC

- Designed to represent the uncertainty (and/or random
errors) of land surface parameterization

- Perturbed soil temperature/moisture directly

* Perturb parameters of land model — PSD/ESRL
- Roughness, surface albedo and soil hydraulic conductivity

* Initial perturbations of soil temperature/moisture — PSD/ESRL
- EOF analysis of the difference of NOAH and climate



EMC’s investigations

e Early investigation — GEFSv9
— EMC visitor from CMA (Dr. Deng) in 2010
— Initial Soil temperature/soil moisture perturbations

— Deng, G., Y. Zhou, L. Zhong, Y. Zhu, R. Wobus, M. Wei, 2012:
"Effect of Initial Perturbation of Land Surface Processed on
Tropical Cyclone Forecast” Journal of Tropical Meteorology, Vol.
18, No. 4, 412-421

— Deng, G., Y. Zhu, J. Gong, D. Chen, R. Wobus and Z. Zhang, 2016:
"The Effects of Land Surface Process Perturbations in a Global
Ensemble Forecast System” Advances in Atmospheric Science
Vol. 33, 1199-1208

e Current investigation — based on GEFSv11
— Not initial perturbations, but stochastic physics perturbations.
— The same stochastic pattern as SPPT
— Soil temperature — all four layers (15t try)
— Both soil temperature/moisture



Model Lower Level Temperature
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2 Meter Temperature Skim Temperature

Std Dev of 2-m Temperature f12 Std Dev of Surface Temperature f12
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ESRL/PSD’s Investigations

In land model, perturb surface momentum roughness
length (Z,), thermal roughness lenghth (Z,) and soil
hydraulic conductivity (SHC)

Test sensitivity of surface albedo

Parameter values are perturbed using spatially and
temporally correlated random patterns, as in SPPT and
SHUM.

Only a slight increase (0.1 K or less) in spread, even
when combining SHC and roughness perturbations.
Perturbing albedo has a larger effect, but still only
~0.25 K for the largest perturbation.



T2m, Spread, Land. 12 Cases, Jul-Aug 2014.
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Next GEFS (version 12)

Introduce new dynamic core — FV3
Integrate current/improved physics
C384L63 (25km) for day 1-8

C192L63 (50km) for day 8-35

21-31 members per cycle, 4 times per day
Initial perturbations — EnKF f06

Model uncertainties

— Stochastic perturbations for atmosphere
— Stochastic perturbations for land
Ocean boundary — SST
— Introduce bias corrected coupled predictive SST
— NSST to assimilate diurnal variation of SST

Reanalysis and reforecast to support downstream
application



Where to go from here?



Towards physically based stochastic
parameterization - NGGPS

Direction of future model physics development
— Physically based stochastic parameterization
— Not deterministic solution, but full representation of model uncertainty

— Generates ensemble realizations of tendencies including realistic space-time
correlations.

— From tunable to functional
Closed coordination (or work together) between model physics and
ensemble development.

— Connection through NGGPS CCPP (Common Community Physics Package)

— Verify new stochastic parameterization in terms of ensemble metric (GMTB -
Global Modeling Testbed)

Identify (and/or understand) source of uncertainty, the key parameters to
produce model errors (for different scales?), such as:

— Convective trigger?

— Rate of entrainment (updraft)/Detrainment (downdraft)?

— Turbulence and convection parametrizations? - EDMF

— Parameters in the microphysics?

— Many others???
Physically based scheme should be appropriate for all scales (scale
aware), not only one/two schemes.



Towards physically based stochastic
parameterization - NGGPS

e Should we?

— Avoid to spend major resources on:
e Multi-model or multi-physics approach?
e Ad-hoc stochastic physics process?

— Pay attention to:

e Land surface process (important to improve surface
elements of forecast)

e Ocean surface (SST) (important to extend
forecast, week 2, 3, &4)

e HIW, such as tropical storm forecast



Model error at mesoscale:
Example: cloud microphysical processes

Conversion processes, like snow to
graupel conversion by riming, are very
difficult to parameterize but very important
in convective clouds.

Especially for snow and graupel the
particle properties like particle density

%
f'.
s %
melting %
=,
e freezing g

cloud droplets

The assumption of a constant particle
density is questionable.

aggregation

autoconversion

Aggregation processes assume certain
collision and sticking efficiencies, which are

not well known.

-

_v‘
= Nming v ow

Most schemes do not include hail processes

Gy
Sunun

() "N\ 1 z 1] . like wet growth, partial melting or shedding
% a@ K i 6”3 £ ﬁw“ (or only very simple parameterizations).
/ ‘\ \ ¥y ,r’go
(Y ~==] graupel/hail The so-called ice multiplication (or Hallet-Mossop
process) may be very important, but is still not well
understood 41

from Axel Seifert presentat.....t0 NCAR ASP summer colloquium 40

and fall speeds are important parameters.



Stochastic Deep convection

The Plant-Craig stochastic convection scheme

1. Closure assumption 2. Draw clouds randomly
scales a pdf of cloud radii from this pdf
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CIN — Convective Instability
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Available Potential Energy
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W — Vertical Motion
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function (delta pressure)
R(N) — Random function
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Stochastic Parameterization

S

“Convective trigger”

Convective Trigger
function in most
cumulus
parameterization
scheme (SAS:
Simplified Arakawa-
Schubert)

PLsc-Pirc <= DP(w)
Convection is
triggered,

PLcs-Pirc > DP(w)
No sub-grid
convection

Figure: Schematic diagram showing an air parcel path when raised along B-C-E compared
to the surrounding air mass Temperature (T) and humidity (Tw)
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Extra slides — may be for discussion?



Towards physically based stochastic
physics/parameterization

e ECMWF: New scheme, SPP: Stochastically Perturbed
Parameterizations (starting with cloud/radiation
interaction)

 Enviro Canada: In development: Plant-Craig stochastic
deep convection, cloud model is adopted from the
Bechtold scheme (closure is still deterministic, plume
generation is stochastic)

e UK Met is testing random parameters in physics
schemes. Parameters include droplet number in
microphysics, entrainment rate, turbulent mixing rates.
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SKEB - Spectral Kinetic Energy Backscatter

® Rationale: A fraction of the dissipated energy is backscattered
upscale and acts as streamfunction forcing for the resolved-

scale flow
(Shutts and Palmer 2004, Shutts 2005, Berner et al 2009)

® Streamfunction forcing is given by:

F@(A[L??t) — \/lel)ltotF(Alﬁ M&n:‘t)

Streamfunction
forcing

Total
dissipation
rate

Pattern
generator

Backscatter ratio

)

a) 10%

Power Spectrum
Power Spectrum

. No SKEB
TO T == == \Wijth SKEB I

10° 10" 10°
Total Wavenumber n
Eicure 6 from Berner et al (2009)

10° 10" 10°
Total Wavenumber n
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Schematic of the Madden-Julian Oscillation
- cross-section along equator

upper level divergence

Increased shordwave
flux

enhanced
evaporation

mean westerly wind

approx. 60° of longitude
or ~30 days



What other global centers are doing?

 ECMWEF

— Operational: SPPT and SKEB in the
medium/extended range, Ensemble DA only uses
SPPT

— In development: Modifications to SPPT (SPPTi and
work on ensuring global integral of tendency
perturbations is zero)

— New scheme, SPP: Stochastically Perturbed
Parameterizations (starting with cloud/radiation
interaction)
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What other global centers are doing?

e Environment Canada:

— Operational: PTP (similar to SPPT), SKEB and muilti-
physics

— In development: Plant-Craig stochastic deep
convection, cloud model is adopted from the

Bechtold scheme (closure is still
deterministic, plume generation is stochastic)
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What other global centers are doing?

e UK Met is testing random parameters in physics schemes similar to the
land surface perturbations that Maria and Gary are working on

e Parameters include droplet number in microphysics, entrainment
rate, turbulent mixing rates.

Met Office Improved RP algorithm , ,
| Increase in spread is small, and
Slower, more smoothly varying parameter path

Oiginal R ensemble is still under-spread in

near surface wind and
temperature, but improves fog
forecasts. They are also
perusing land surface
perturbations.
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George Craig

Physically-based Stochastic Perturbations (PSP)

Implementation in COSMO model (2.8 km grid length)

« Add random increments to model variables

- Amplitude scaled using turbulence theory

* Rescaled to account for averaging over effective horizontal resolution
« Perturbations are coherent in height and over 10 min in time

op\ " 9o
(W) T + Qsh - Nsh - {¢2>U2 { 1
sh o = (X . _ .
ST U B dx ot
. tendency of @ of all physical parameterizations
ot dt : temporal resolution of model
® : resolved variable (T, w, q) ¢+ : asymptotic mixing length
ash : scaling factor dx : haorizontal resolution of model grid
nsy - Gaussian random perturbation :
) _ o ash,e : scaling factor
(®°) :variances from turbulence parameterization

(Kober and Craig 2016)

52



Where to go from here?

Need closed coordination (or work together) between
model physics and ensemble development.

ldentify (and or understand) the key parameters to produce
model errors (for different scales?)

Develop physics based stochastic parameterization
schemes

Physically based scheme is appropriate for all time scales
(scale aware - hourly to seasonal) and spatial resolutions
(less Km to ??7?)

Multi-model or multi-physics approach????
Land surface needs more attention
Ocean surface needs more attention

Tropical storm needs to investigate (could be related
issue, not only for stochastic, but also initial perturbation)
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