
Entrainment, Detrainment, 
Multiplumes & Stochastic Convection

A.  Pier Siebesma, R. Neggers, S. Boing, J. Dorrestijn 
a.p.siebesma@tudelft.nl



2 Climate modeling 

1. 

Entrainment  
 

But what about detrainment? 
   

S.J. Boing, A.P. Siebesma, J.D. Korpershoek and Harm J.J. Jonker  
GRL (2012) 



https://github.com/dalesteam/dales 

Dutch Atmospheric Large Eddy Simulation Model (DALES) 

Heus et al. Geoscientific Model Development (2010) 



Motivation Derbyshire et al. QJRMS (2004) 

CRM Single Column Model 
(ECMWF) 2004 

New ECMWF entrainment parameterization (Bechtold 2008  QJRMS) 

( ) scalefzRH )(3.10 −= εε Larger entrainment rates: lower cloud top height. 

Is this justified? 

Mass Flux Profiles 
 
For different environmental 
RH-conditions 



Kain_Fritsch mixing (1) (Kain Fritsch JAS1990) 

•  Fractional inflow rate ε0 
 

•  Assume uniform distribution of all possible 
mixtures 
(Bretherton et al. MWR 2004,  
 Raymond & Blyth JAS 86) 

• Entrainment/Detrainment rate dependent on 
buoyancy 



Kain_Fritsch mixing (2) (Kain Fritsch JAS1990) 

De Rooy and Siebesma MWR 2008  

Δθv    =>    χc 

RH    =>     χc 

entrained detrained 



Opposite RH  sensitivity for entrainment in plume models 

Msc thesis Sander Jonker (2004) 

Larger RH => larger χc => higher 
entrainment => lower cloud top 

But what about detrainment…? 



Deep Convection: the case 

• Domain Size 75X75X25km 

•  Δx=Δy=150m Δz=40~190m 

• Fixed surface fluxes:  

• LHF ~350W/m2 

• SHF ~150W/m2 

• No windshear 

• No radiation 

Similar set up as in: Wu, Stevens, Arakawa JAS 2009 

Most cases repeated 5 times 
with different random 
initialisation (200 similations) 
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entrainment and detrainment (hour 7 & 8) 



entrainment and detrainment (2000~3000m) 

• Detrainment decreases with increasing humidity 
• Detrainment decreases with increasing instability 
• Variations of Entrainment small……..compared with the variations of detrainment 



entrainment and detrainment (2000~3000m) 

• Entrainment decreases with increasing RH, instability …. But differences are much smaller 



precipitation and cloud top height 

Precip , cloud top height  increase with increasing RH, instability 

Cloud height ~ 0.01 Mmax 



How about χcrit (2~3km)? 



χcrit as the key parameter (2~3km) 

cwM σρ0≡

Variation due to cloud core fraction or due to incore vertical velocity? 



Cloud fraction and vertical velocity 



Simplified Physical Picture 

Dryer and less unstable Moister and more unstable 



The simplest mass flux parameterization 



What about entrainment? 

Use a simple                          instead.  ✏ ' z�1



•  Strong dependency of moist convection on tropospheric relative humidity and 
stability 

 

•  Mostly related to detrainment and hence due to the cloud height distribution 
 

•  Allows for simpler and more realistic bulk mass flux convection parameterization  
 (get around detrainment) 

 

•  No need to seperate shallow and deep convection 
 

•  Can this behaviour also be captured by a multi-plume approach?? 
 

Conclusions and outlook 
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2. 

Multi-Plume Approach 
   

Neggers JAMES (2017) 



Cloud Ensemble as a Predator-Prey System



Idea: Application of LV to cloud populations

See each size as a different species 
 
Interactions between clouds of different size: 
 
* Big clouds die and break apart into smaller 

ones  (downscale energy cascade) 

* Smaller clouds feed bigger ones by 
‘preparing the ground’ for their existence 
(pulsating growth) 

* Bigger clouds prey on smaller clouds, by 
suppressing them through compensating 
subsidence & the effect of gravity waves 



Cloud size densities 

Pretty well known from observations 
and LES  

Plank, J App Met, 1969 



What is ED(MF)n ?   The Eddy-Diffusivity (ED) multiple Mass Flux (MF)n scheme 
 

Model development :    ED(MF)n    “Bin-Macrophysics”  

Novelties: 

•  Spectral formulation in terms of size 
densities - back to the ideas of 
Arakawa & Schubert (1974) 

•  Discretized into histograms with a 
limited number of bins 

•  Each bin represents the average 
properties of all plumes of a certain 
size 

•  The discretized size densities are 
“resolved” using a rising plume 
model for each bin 



Model formulation – Step I

Foundation: the number density as 
a function of size dllN

l

 )(∫= N

b  )( lal =N

Adopted shape: power-law , 
potentially including scale-break 

Observations suggest: 

b ≈
−1.7   for   l < lbreak
−3      for   l ≥ lbreak

⎧
⎨
⎩

l  : size 
N : total nr 



Model formulation – Step II

Related: the size density of area fraction 
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Basic EDMF: 

%10=MFa For the moment 



Model formulation – Step III

Expand to fluxes, introduce dependence on height (z): 

[ ] dlzzlzlwzlzw
l

  )(),(   ),( ),(  )('' φφφ −= ∫ A

),( zlM

To do:  come up with a method to produce  ( l, z )  fields 

Mass flux 

A spectral mass flux scheme (e.g. Arakawa & Schubert,1974) 



∂ϕl

∂z
= −ε(ϕl −ϕ ) forϕ ∈ θ l,qt{ }

1
2
∂wl

2

∂z
= −εwl

2 +αB

εl ∝ l
−1

Model formulation – Step IV

n Plume Equations with different sizez li: 

Remark 1 : No detrainment necessary (determined by multiplume ensemble) 
 
Remark 2:  More equations but less parameteric freedom 



Justification from LES

Clouds sampled 
using 180 
snapshots from 
GCSS BOMEX 
case 
 
 



Preliminary results with ED(MF)n

Single-column model experiments for the RICO shallow cumulus case, using a 
prescribed number density 



Preliminary results with ED(MF)n

Decomposition of the humidity flux as a function of size:  
Indirect interactions between plumes of different sizes 



Different sizes play a different role in equilibration

Humidity budget 

z
qw

t
q tt

∂

∂
−=

∂

∂ ''

Smaller convective plumes 
pickup humidity below cloud 
base, and detrain this 
above 

In turn, the largest 
convective plumes pickup 
flux above cloud base, and 
transport this up to the 
inversion 



The “acceleration-
detrainment” layer  (III) 



•  No need for specification of mass flux (or detrainment) 

•  No specific assumptions needed for entrainment 

•  Self-regulating physical mechanism 

•  All closure assumptions are condensed in the cloud base area fraction (and the 
cloud base size distribution) 

•  Microphysics, stochasticity and scale awareness can be build in naturally 

 

Random gaps 
(stochasticity) 

Size 

N
um

be
r Cut-off length  lSGS 

Scale-awareness 

But how exactly? 

     Conclusions and outlook 
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3. 

Stochastic Closure 
   

Dorrestijn, J., D. Crommelin, P. Siebesma, H. Jonker, and C. Jakob, JAS (2015) 
 

J. Dorrestijn; Daan T. Crommelin, A.P. Siebesma, H.J.J. Jonker and F. Selten JAS (2016) 



26 1. Introduction

high-resolution models as LES, no convection parameterization is needed.
With higher model resolutions, atmospheric flows can be simulated in more de-

tail. Therefore, atmospheric models tend to get more accurate if the resolution
increases. The availability of more computational resources enabled modelers to
increase the grid resolution of GCMs for decades. This partly explains the major
improvements of numerical weather and climate models. At the moment, however,
complications are encountered when increasing model resolutions, because GCMs
operate with resolutions that are getting close to, or are already in, the Grey Zone
[48, 60, 149] or Terra Incognita [147]. For models with grid resolutions such that
convection is partly resolved and partly unresolved, the so-called Grey Zone resolu-
tions, grid resolutions in between the two extreme situations described above (Fig.
1.9), transport has to be represented in a different way. The quasi-equilibrium
assumption is no longer valid since the ensemble of cumulus clouds is too small.
Individual cloud life cycles are important in this case and traditional mass-flux pa-
rameterizations are not correct. Entirely omitting convection parameterizations,
as is done for LES, is also not possible, because then convective transport would
be underestimated. Note that by definition the Grey Zone is a range of grid reso-
lutions that is dependent on the sub-grid process that is considered. For example,
the Grey Zone for deep convection differs from the Grey Zone for shallow convec-
tion, because the processes have different typical sizes. The range of Grey Zone
resolutions corresponding to shallow convection is shifted to smaller grid sizes as
compared to the range of Grey Zone resolutions of deep convection.

As computational power increases, GCMs will get or already are in the Grey
Zone for deep convection, followed by the Grey Zone for shallow convection. This is
a problem that has to be addressed and can not be neglected.

Stochastic parameterization of convection
The intermittent and random character of moist convection vanishes when only
statistical properties of an ensemble over large areas are important, and therefore,
for coarse grid resolutions, deterministic parameterizations of moist convection are

resolved convection Grey Zone parameterized convectionstochastic zone

Δx ~ l  Δx > l  Δx >> l  Δx << l  

Figure 1.9: Top view of the atmosphere. Each dot represents a convective updraft with horizontal
length scale l. The panels illustrate different situations: for models with high-resolutions (¢x ø l),
convection is explicitly resolved (left panel); for models with coarse resolutions (¢x ¿ l), convection can
be parameterized (right panel); for models with resolutions in the Grey Zone (¢x ª l) in between the
two extremes, convection is partly resolved (second panel from the left); and for models with resolutions
¢x that are only slightly larger than l, convection can be parameterizated, but since the number of
updrafts that are present in a model column varies significantly, stochastics are needed (second panel
from the right).

LES Traditional GCM 

250 km 

High res GCM 
 

100km 

Mesoscale GCM 
 

100 m 1~10 km 

Breakdown of statistical quasi-equilibrium

Resolved Deterministic Stochastic 

Dorrestijn & Siebesma 2014 



GCM grid box  a micro-grid (N micro-grid nodes) 

2. Stochastic Multicloud Approach
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squall lines [55, 56] to synoptic scale convectively coupled waves [50, 48] to the plane-
tary/intraseasonal scale Madden-Julian oscillation [10, 26] involves three cloud types.
Congestus cloud decks with a vertical extent which does not exceed the freezing level,
at about 5 to 6 km, in front, are followed by deep convective towers extending to
the top of the troposphere, which in turn are lagged by stratiform anvils in their dis-
sipation phase. Congestus clouds heat the lower troposphere due to condensational
heating and induce upper troposphere cooling because of detrainment at their tops
and thus serve essentially to precondition and moisten the middle troposphere. Deep
convective towers dominate the core of the storm and are believed to be responsible
for most of the tropical rainfall and provide the bulk heating for the whole tropo-
spheric column. Stratiform anvil clouds, in the wake of the wave, heat the upper
troposphere and cool the lower troposphere due to the evaporation of stratiform rain.
A cartoon of the three cloud types is sketched in figure 2.1. While the transition

(s) (d)

(c)

Top of the troposphere

Top of the boundary layer

Fig. 2.1. A cartoon of the three cloud types showing congestus (c), deep convective (d), and a
decaying deep convective tower with a lagging large stratiform anvil (s), with stratiform rain falling
into a dry region below it where it eventually evaporates and cools the environment (hatched area).
The arrows indicate convective motion within the cloud.

from deep to stratiform is easily interpreted as the passing of the cloud from a liquid
phase to an ice phase within the upper troposphere, the delay in the formation of
deep convective towers is less obvious. A plausible explanation is given here in terms
of the buoyancy of a rising convective parcel evolving in an environment whose mois-
ture content is constantly changing, from dry to moist and vice-versa. Two different
scenarios are sketched in figure 2.2: that of a dry environment (left) and that of a
moist environment (right). Unlike dry convection where the fluid becomes unstable

Each micro-grid node can be in one of the M (=4) states: 

Stratus   deep convective   congestus    clear   

( Khouider et al 2010 ) 

•  Each type has a area fraction defined by:  

2. Markov chains98

The multicloud model we use in this study consists of Markov chains positioned on the99

nodes of a 2-dimensional micro-grid. This model set-up has been used before in Khouider100

et al. (2010); Dorrestijn et al. (2013a); Peters et al. (2013). The state of each Markov chain101

at time t is denoted Yn(t), where n is the micro-grid index. Each Yn can take on 5 di↵erent102

values, corresponding to the following categories: clear sky, moderate congestus, strong103

congestus, deep convective and stratiform. The choice of these specific categories will be104

discussed in Section 3. We will refer to these categories as cloud types. As time evolves, the105

Markov chains can switch, or “make a transition”, between states every �t = 10 minutes.106

All the Markov chains on the micro-grid together determine the area fractions �m for the107

various cloud types:108

�m(t) =
1

N

NX

n=1

1[Yn(t) = m], (1)

in which 1 is the indicator function (1[A] = 1 if A is true, 0 otherwise), N is the number109

of micro-grid nodes, and m 2 {1, . . . , 5} the cloud type. We use radar data to estimate the110

transition probabilities, needed in the Markov chain model.111

When used in a GCM, each GCM column contains N Markov chains that can switch112

to a di↵erent state every 10 minutes, resulting in time-evolving area fractions �m for each113

cloud type and for each GCM column. These area fractions can be used in the convection114

and cloud schemes of a GCM. For example, the deep convective area fractions, �4, can serve115

as a mass flux closure at cloud base for a deep convection parameterization scheme:116

Mb = ⇢ �4 wcb, (2)

in which ⇢ is the density and wcb is the vertical velocity in a deep convective updraft at cloud117

base (e.g. Arakawa et al. (2011); Möbis and Stevens (2012)). More examples of possible118

applications in GCMs are given in Section 7.119

As mentioned before, we use Markov chains with 5 possible states, so that the transition120

probabilities form a 5 ⇥ 5 transition matrix. Since these transition probabilities depend121

5

•  Probability to switch from state α to β      : Pα→β =
T (α,β)
T (α,β)

β

∑

Transition Probabilities can be found 
through: Obs data, LES data, Theory 



LES data labeled with 4 cloud types 

Trained Cellular Automata 
(i.e. CMC with neighbour interaction) 

Dorrestijn et al: Phil Trans R Soc A (2013) 



5.3. The Dor15 scheme 107

the large-scale state. Introducing time-correlation was explored as well by using
CMCs. The scheme was able to adequately reproduce observational time series of
æc.

Testing the schemes in a dynamical environment, in which the CMCs are in-
teracting with the resolved model variables in a GCM, is a necessary step in the
development of the CMC-based schemes for the usage in state-of-the-art GCMs.
Therefore, in the present paper, we show results of the implementation of the
stochastic multicloud model of [34], referred to as Dor15, and a scheme similar to
the CMC scheme of [50], referred to as Gott15, in a GCM of intermediate complex-
ity; the climate model SPEEDY (Simplified Parametrizations, primitivE-Equation
DYnamics) ([77, 101]).

The stochastic schemes produce æc which serves as a closure for the cloud base
mass flux Mb in the convection parameterization scheme. So, SPEEDY’s tradi-
tional deterministic convection scheme, a simplified Tiedtke mass flux scheme
([137]), is made stochastic by using æc as stochastic input for the determination
of Mb. This is a crucial step in the coupling of the stochastic schemes to the con-
vection scheme of SPEEDY. The coupling of a stochastic scheme to the convection
scheme of a NWP model, via æc and Mb, has been successfully applied earlier by
[9].

Our paper is organized as follows. In Section 5.3, we describe the Dor15 scheme,
followed by a description of the Gott15 scheme in Section 5.4. Then, we explain how
we implement the schemes in SPEEDY in Section 5.5. We specify the observational
data sets in Section 5.6, and we present model results in Section 5.7. A discussion
follows in Section 5.8.
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micro grid
radar data

cloud types:
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Figure 5.1: Illustration of the stochastic multicloud model (the Dor15 scheme). The thick black lines
indicate the GCM grid of which we see 4 columns from a top view. Inside the 4 columns, the thin
black lines form the 2D micro grid of the multicloud model. Here, each GCM grid column contains
N = 25 nodes, with a CMC on each node, switching between the 5 cloud types. A snapshot from the
discretized radar data from Darwin is included to point out that the transition probabilities of the
CMCs are estimated from observational data.

5.3 The Dor15 scheme
The stochastic multicloud model consists of a 2D square lattice with N nodes, with
at each node a CMC, denoted Yn (1∑ n ∑ N), that switches, every 10 min, between
the following states: clear sky (1), moderate congestus (2), strong congestus (3),
deep convective cloud (4) and stratiform cloud (5). We refer to these states as cloud

Training the system with obs 

•  Finding the transition probabilities 

•  Condition them on the present state in order to get conditional probabilities (w, CAPE, 
state of the neighbour)) 

•  Leading to a conditional Markov Chain (CMC) 
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M̂ =

0

BBBBBBBBBBB@

0.8987 0.0668 0.0006 0.0011 0.0329

0.4147 0.4707 0.0033 0.0026 0.1086

0.2563 0.2686 0.2177 0.0545 0.2029

0.1757 0.0284 0.0124 0.4295 0.3540

0.1185 0.0779 0.0010 0.0091 0.7935

1

CCCCCCCCCCCA

The probability of a transition from cloud type m to cloud type n can be found in the nth197

column of row m. For example, the probability that a deep convective pixel will be assigned198

to stratiform 10 minutes later, is 0.3540. The probability that a deep site is again a deep199

site 10 minutes later, is 0.4295, much larger than the expected deep convective area fraction200

(at most 0.03 as can be seen Fig. 6, discussed later in this paper). This is comparable to the201

deep to deep transition probability of 0.5602 estimated from the LES data set of Dorrestijn202

et al. (2013a). Most remarkable is that the stratiform decks in the LES data tend to dissolve203

faster than observed in the radar data. The transition probability for stratiform to stratiform204

is estimated 0.2266 in LES , as opposed to 0.7935 observed in the radar data. Some evidence205

for the life cycle can be seen in the transition matrix, a deep convective cloud likely turns into206

stratiform, which turns into clear sky. Some entries are artefacts of the estimation method,207

for example the probability of clear sky turning into stratiform is 0.0329, but in reality the208

stratiform cloud spreads out from the top of a deep cumulus cloud.209

For correct estimation of cloud type transition probabilities, we have to take into account210

that clouds are advecting horizontally through the domain. To do this, we translate the211

advected clouds in a radar image back to their position in the previous image. In this way,212

we minimize transitions that are only a result of advection. The advection, with zonal wind u213

and the meridional wind v, is assumed to be a function of height and time only. We calculate214

this translation separately for every cloud type (as they are located at di↵erent heights in215

the atmosphere). Let Zm(xi, yj, t) = 1[Y (xi, yj, t) = m], with Y (xi, yj, t) the discretized216

radar pixel at location (xi, yj) at time t and (xi, yj) running over all Nij = 4720 pixels in217

9

1  Clear Sky 
2  Moderate Congestus 
3  Strong Congestus 
4  Deep Convection 
5  Stratiform 

Unconditional Markov Chain 
 

Next step: Condition the transition probabilities on the large scale state 
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Conditioning on ω-intervals 
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h!i-intervals

h!i displays the highest correlation at ⌧ = 0, so we choose
h!i to condition the Markov chains. We choose 25
intervals, which results in 25 di↵erent transition matrices.
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•  For each state γ (i.e. w-interval a transition matrix is 
constructed from the data set 

•  So in total we have now Γ=25  5x5 transition matrices 
describing the transition probabilities ( γ = 1….Γ ) 

•                                   Conditional Markov Chain (CMC)  
 

Pγ ,α→β =
Tγ (α,β)
Tγ (α,β)

β

∑
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Fractions: details

Deep convective fractions in more details  

Adds more realistic variability to the convection scheme 

Dorrestijn, Siebesma & Crommelin (2015) 



SPEEDY 

•  SPEEDY : Simplified Parameterizations, primitivE-Equations Dynamics (Molteni) 
 
•  GCM of intermediate complexity 

•  98x48 grid columns (T30) and 8 vertical levels 

•  Simplified Mass Flux Scheme (Tiedtke 1988) 

•  The Markov chain fractions are used as a closure for the mass flux at cloud base Mb. 

Mb = ρσ bwb,c

σb: cloud core fraction at cloud base 
 
Wc,b: vertical velocity of cloud core at base 

σ b =σ 3 +σ 4

ρwc,b =1
Closure 



Histograms Hovmoller Diagrams 
(Tropics: -150 - +150) Stochastic

scale-adaptive
convective

parameterization

Jesse Dorrestijn

Outline

Introduction: Markov
chains

Darwin: construction
of the
parameterization

SPEEDY: test in a
GCM

EC-Earth: preliminary
results
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u  Conditional Markov Chains (CMC’s) have been used to describe the 
transitions  between the states of the multicloud model. 

 
u  Conditional transition rates have been trained with observational data and 

work best when conditioned on ω
 
u  Increased and more realistic variability of the convective mass flux 

u  Model can be coupled to convection scheme of (any) GCM (such as the 
multiplume) via the convective area fraction in the cloud base mass flux. 

 

     Conclusions and outlook 


