

COMPUTE | STORE | ANALYZE

NWP and Climate Modeling on Cray Systems

Sudhakar Yerneni sudhakar@cray.com Country Manager, Cray India

The Earth Sciences Community

- Increasing emphasis on maximizing the benefits of improved predictability across society and economy:
 - Application of meteorological data to a broad range of services and stakeholders
- High-resolution numerical weather prediction and earth system climate modeling are grand challenge problems.

Use-case and Technology Drivers

- The ability to perform weather and climate simulations at a range of spatial and temporal scales is critical:
 - Results in exponential increases in computational and storage and data management needs
- As infrastructures grow in size and complexity maintaining both reliability and usability becomes more challenging.
- Emerging analytical approaches to enable predictive modeling and knowledge discovery.

COMPUTE

Copyright 2016 Cray Inc.

STORE

Cray Solutions for the Earth Sciences

- Cray's solutions enable a broader and more detailed range of meteorological services and products
 - Advanced modeling capabilities
 - Shortened research to operations
- Experience delivering and operating world's largest and most complex systems
- Emphasis on total cost of ownership power, upgradability and efficiency
- Commitment to long-term partnerships delivering significant ongoing value to our customers.
- Broad presence across NWP and climate communities:
 - From Terascale to Petascale

COMPLITE

- Research and operational environments
- Model development platforms for extreme scale architectures

STORE

Copyright 2016 Cray Inc.

ANALYZE

Why Cray ?

Market Presence

Global Model: UM N768 (~17km) L70

- 6 day twice daily, 2 day twice daily
- Data Assimilation: 4D-VAR

Global Ensembles: N400 (~33km) L70 12 mem.

- 7 day, 4 daily
- Data Assimilation: 4D-EnVAR

Other models (subset)

- UK HighRes: 1.5km, 36h 8x daily
- UK Ensembles: 2.2km, 12m, 36h, 4/day

Outlook:

 Further upgrades as Phase 1b Cray systems enter operations

- Dual Cray XC Phase 1a
 - Details not public yet, Haswell
- Equivalent performance to IBM P7
- Operational August 2015
- Approx 11PB of Cray Sonexion
- Phase 1b: 2016
 - Addition of Broadwell
 - Combined 1ab >6x sustained

COMPUTE

STORE

Overview

System

ANALYZE

Copyright 2016 Cray Inc.

Trend Towards Seamless Forecasting

- Across timescales and resolution
- Diverse set of audiences and stakeholders
- Driving use and capability of HPC resources
- Enabled By Cray Supercomputing Systems

	Seamless forecasting services								
	Forecast lead-time								
	Observations and past data	Hour	Day	Week	Month	Season	Year	Decade	Century
								Mitigation	n policies
es								Infrastructu	re planning
							Homeland & international security		
							Adaptation	n strategies	
							Regulator	standards	
	Climate vulnerability analysis					Financia	al & property po	rtfolio risk mana	gement
							Investmer	nt strategy	
						Aid agencies	& international	development	
C						Market trading			
					Ma	intenance plann	ing		
	Scenario planning					Insuran	ce/re-insurance	hazards	
,				Resource planning: energy, water, food					
				Operation	s planning				
3		Di	isruption plannin	ng					
	Weather warnings								
	Emergency response								
COMPUTE STORE ANALYZE									

5

European Centre for Medium-Range Weather Forecasting

ECMWF

Ę

Configuration

Model

Global Model: IFS T1279 (~16km) L137

- 10 day, twice daily
- Data Assimilation: 4D-VAR

Global Ensembles: T639 (~32km) L91 51 mem.

- 15 day, twice daily (64km beyond day 10)
- Data Assimilation: 4D-EnVAR

Other models

- Extended 46 day ensembles (weekly)
- Seasonal forecasts monthly/quarterly

Outlook:

Mid-2016: Upgrade to 9km (global) 18km (ensembles)

"Ventus"

Anemos"

- Dual Cray XCs "Ventus" & "Anemos":
 - Each 3505 nodes (Ivy Bridge)
 - 3.6 Petaflop peak
- Cray Sonexion Lustre Storage
 - ~12PB capacity
 - ~500GB/s bandwidth
- ~50PB archive (growing rapidly)

Operational September 2014

COMPUTE

STORE

System

Overview

ANALYZE

A Day In the Life of Anemos

What ?	How Many?			
Total Jobs	217,118 per day			
Parallel Jobs	39,081			
Single Node Jobs	60,793			
Single Core Jobs	117,244			

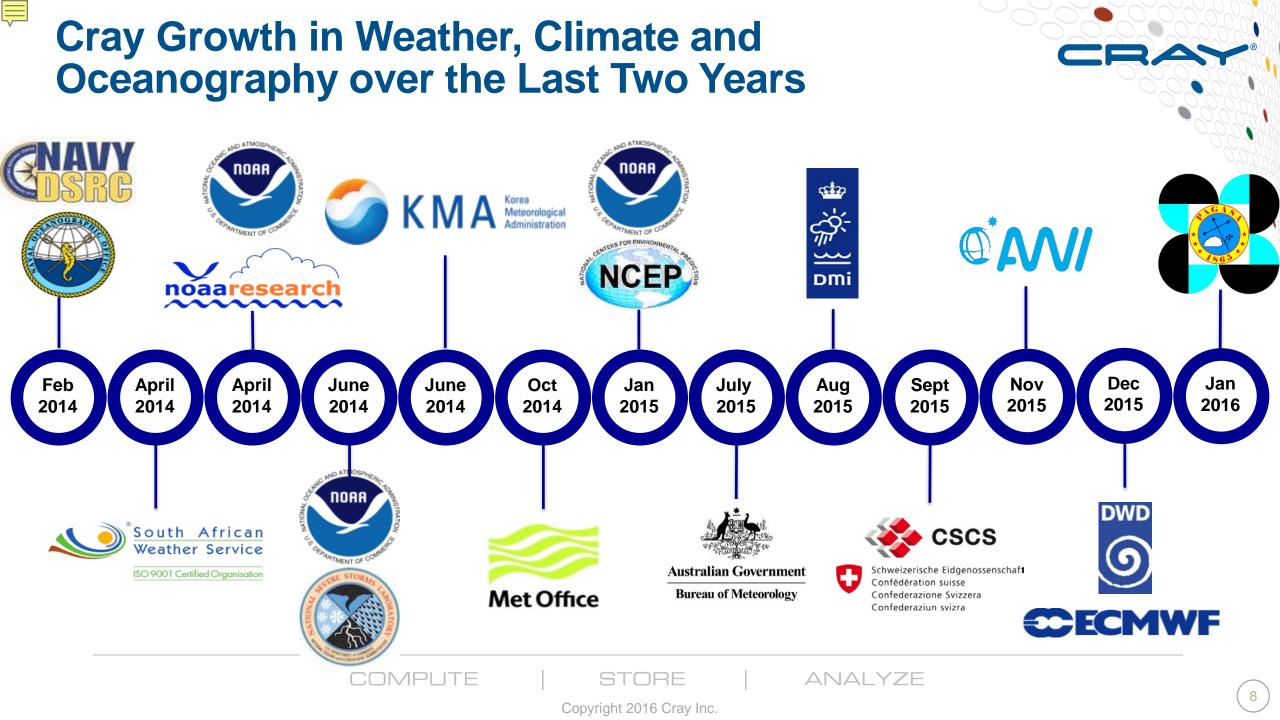
http://www.ecmwf.int/en/computing/our-facilities/supercomputer

Source:

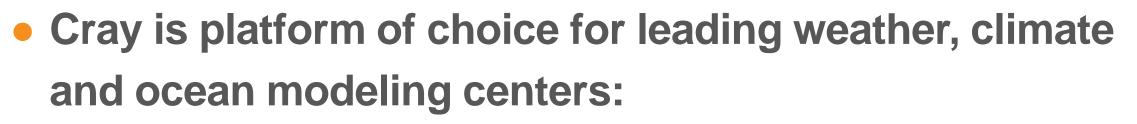
These small jobs 28% take less than 1% of the total resources of a system 54% Parallel Jobs

ANALYZE

Serial Jobs


Single Node Jobs

18%


COMPUTE

STORE

Copyright 2016 Cray Inc.

- Delivering high performance, efficiency, & reliability
- Enabling unprecedented simulations
- Supporting the development of next generation modeling capabilities
- Key community within Cray's customer base

COMPUTE

TORE

ANALYZE

Copyright 2016 Cray Inc.