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ABSTRACT

This report purports to be a brief review of
the various technigques of preparing the initial data, from
a given set of observed grid point data, to serve as input
to the NWP model. It alsoc contains the work done under
this project, in the Institute, A critical examination of
the comparative merits of each scheme and its suitability
under Indian conditions, is also attempted.



1, INTRODUCTION

Numerical Weathesr Prediction consists in solving a set of
partial differential eqguations, representing the atmospheric
variables, as an initial value problem, The solution admits two
basic types of waves, viz.(a)the slow, cuasi-geostrophic, meteoro-
logically significant waves, (b)the fast, inertia-gravity waves.
The initial wvalues of the time-dependent atmospheric variables,
constitute one stace of an atmospheric model and are obtained from
observations of the real atmosphere. In the ideal physical
situation it shbuld be expected that the observations would specify,
unambigously, one value for =ach and every state parameter at the
selected initial time, t = 0. However, this ideal state never
materializes in actual meteorological forecasting, owing to the

following reasons ;=

(2)Conventional pressure, temperature and wind observations
are inadequately distributed around the planet and leave
severe geographical gaps whare no data are available,

(b)Conventional observations are point measurem=nts which do
not provide a correct sampling of the highly variable mete-
orological fields. Such measuremsnts are not representative
of true volume averages as raquired by numerical models,

(c)Conventional observations are subject to significant random
instrumental errors.

In the absence of the ideazl state, certain imbalances
occur initially in the observed mass and wind fields, which
manifests itself through:the large horizontal divergence fields,
changing rapidly with time. When this data is introduced into the
model equations and integrated forward with time, fast inertia-
gravity waves develop, which interfere with short-range forecasts
upto 12 hrs. and longer range forecast of vertical velocity and
precipitation, It is desirable, th=refore, to eliminate entirely
these waves from the model at initial time t = 0, or to reduce
them as much as possible, To achieve this elimination or reduction,

is the purpose of initialization.

e PHYSICS OF INITIALIZATION

The physical processes by which the mass and the wind
fields are brought into a state of mutual balance is called the
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'adjustment process', In nature there is always a tendency for the
changing mass and wind fields to adjust themselves towards a state
of mutual balance aﬁd the energy of the imbalances are gen=zrally
dispersed in the form of inerktio-gravity waves. In a realistic
mathematical model, it should be possible to bring out this adjust-
ment process. Cahn(1945) investigated the oscillations resulting
from a sudden addition of momentum to a rotating £luid body. He
considered an initial current system of width 2a, flowing into the
plane of the paper with a steady velocity Ug (Fig.1l). The
vecomponent is initially taken to the zero and 'u' is defined

as follows :-

B e U(Etmmfﬂ»&[‘) ?LW /y/g_a-
i =L ik %M-/’y/:?a

The depth of the fluid system is Dye In the northern
hemisphere, the coriolis force will act to the right of the
direction of the current, ci@uing an accumulation of mass on the
right bank, The pressure gradient force will act in the opposite
direction and tend to balance the coriolis force, The govarning

equations are as follows :=-
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If one eliminates iiand ;K by cross differentiation, one obtains :-
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This is the well-known telegraphy equations whose solution is :-
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A= \/g—.]);_. : . ) T
where is the Rossby radius of deformation and ¢ is the
zero order Bessel function of 1lst kind. The Rossby radius of deforma-
tion can be physically interpreted as the distance over which the
gravitational tendency to render the free surface flat is balanced by
the tendency of the coriolis acceleration to deform the surface.

A plot of "4+ ! versus time ' t ' is as shown in Fig.2 at y = 0.

Now let us consider an incompressible, homogeneous, non-
viscous, rotating fluid with a flat bottom ard a free upper surface.
The linearized form of the basic equations, which govern such a
fluid is given as{ -

PQu  _ 1 g2k
= - Fu ?'a;:
TR S T SRR R e
- Y
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SRt = DY
Pys D /

Yh! 1s. the iaerturbed height of free surface ; H is the mean height
of the fluid surface. The coriolis parameter is assumed to be constant.
Let us suppose that u,v,h can be represented as sums of 2-D Fourier

component i.e, &‘ [ér{ = ’{,?}

wn (’?c,-y,é) = ZZ’LC&X (t) € S .
k2

where Z{k( represents the Fourier coefficient for kth and 1lth
wavenumber components. In the same way '+ ' and 'h' can also
be represented., We also define a stream function 'y} ' and a
velocity potential ‘% i which can also be represented in the form

(4
of Eq. (2.5). The rotational and divergent component of Z{ can
be written as :

ﬂ\‘"- "%'_‘.;-; -‘L-fzy/
M%,‘ ?ll = ‘Lé%
kS % :
where Y = Ug, U, = - f-.é:k_,..-,. 256
BV Vit s ,t‘é%*pufc(

Substituting Eg. 2.5 in Eg. 2.4, we get
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substituting for 'AL' and *!'AF' from Eq.(2.6) and eliminating
successively the terms containing 'l{}’ and ' 9" respectively.
from the L.H.8., we get two equations, viz.,

p D
g€
B Rt e e
ot

The equation for *h' is given as

LRSS (4%47')9( ke g
2L

This system is not capable of describing the adjustment process
since it has a general solution which will oscillate indefinitely
without change of amplitude. It is seen from Egn.(2.10) that the
height tendency is a function of the velocity potential. We,
therefore, introduce a damping term, in the form 2/ VXin the
divergence equation (2.9), where EV’ is a diffusion coefficient.

R3S
E- £
?7?% s (’é"+z£f))ﬂﬁ

The modified form of Eqg,(2.9) becomes :

0 o 9K - z(k‘+1")94 = il
2C

Our aim is now to get a convergence towards a balanced stationary
state, represented b
, repres Y%J%J,,/{r

Let % = _‘?XJ\

f

from Egn., (2.8) we have ;k‘:

p—

13y 7
£ SE. 5hbstituting for X
in Egn. (2.10) we have :

2 - 299 =
#J[%JH&*K)BT—O 2) 9.
- ?fﬂ/—/{éh()j?

We define a parameter 52 such that ?_{2__ = - 7[;3——
0E
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Here J! is invariant with respect to time. If the initial mass
and wind fields are not in geostrophic balance, we impose the

condition that the stationary values of Jz. is egual to its
initial value i.e.

Ha )%+ FR = Hewet) o + FA,

The stationary state is the balanced state in which ?p and A{
are related through the geostrophic relation.

= Jh e A
Substituting for /ﬁ’ in the above eguation, we get -, ;
G [H (e L" +f] vﬂ(é'“w()«t"*f'{'
_ ahfe +,{'=) G -+ o AR
% = W
| [gH (kL vt 27] LaH(k*+L%) S
folriali e AR e e S
TH A+ GH (b3A)+S

b = LY +(/—o()¥?_/{i-

/
We now construct a hypoth=tical streamfunction Q% = '?‘{‘ ’
which is in geostrophic balance with the initial geopotential
height K. . LT
: L

U= ¥ ) g

We now consider the following cases

esesb/=



caseA &« = 1

3
Eg. (2.13) now reduces to % = L:”G o 0(—%' 4 then ‘QH(’?Z*’(L/ :}>Jf
but 9{7-ais the given initial wind field which is not in balance
with the mass field, and since the ideal, geostrophically balanced
stationary wind field is egual to the given initial wind field,
it follows that the mass field will have to adjust to the initial wind
field, In the tropics, since ¥ is very small, the condition

o —=> ) is fulfilled and the geopotential height field is
adjusted to the initial wind field.

Case B o{ — O
/
Egq. (2.13) now reduces to Vaa = Vﬁ .. Lt @lso dimplies that
2
Q H(.&"—f [7 s r 2 V’; is a hypothetical streamfunction which
is in geostraphic balance with the initial height field, .AC- - IS0

/ L
we replace VE with the real height field as :
7

[rb‘.; szg/ff:‘-'— WJ‘

In this case we see that the balanced stationary wind field is

equal to the given initial height (mass) field. . So the initial

wind field U@ has to adjust towards the given mass field. The
aforesaid condition exists in the ‘higher latitudes where }"is large.

It may also be notsd that for waves with véry large wave numbers
(small wave lengths), case A is satisfied irrespective of the latitudes,
and for small wavenumbers (large wavelengths) case B is satisfied.

The adjustment process in a baro¢linic model is more complicated
due to the existence of internal gravity waves. The adjustment proce=-
sses associated with external inertia-gravity waves is faster than
with internal modesa. Some experiments were carried out with a 3-
dlevel baroclinic model in which a disturbance was artificially
introduced in the mass field at a particular level, as well as
extended to all levels. In the latter case, the Tecovery of
the pattern £from the unbalanced state to the original
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balanced one was rapid and sufficiently accurate, This was
essentially due to the role of the ext=rnal gravity wave in
rapidly dissoelving the imbalances, because of its fast phase
speeds., On the other hand if the disturbances were limited to
one layer, then the convergence to the original field was slow
and inaccurats because now the adtjustment process was done

through the internal gravity modes,

B3 METHODE OF INITIALIZATION

Leith (1980) developed the 'Slow manifold' concept which
is wvery useful in graphically illustrating the different types
of initialization procedures, It was seen that the solutions
of the model eguations contain two basic modes, viz. the Rossby
and ths gravity modes, reg.. The Rossby modes evolve slowly with
time, while the gravity modes have high freguency oscillations.
The 'slow manifold' is Jdefined as the locus of all model stetes
which wre evelving slowly in time. In Pig.3d, the amplitude "Y'
of the Rossby modes is the abscissa, while the amplitude of the
gravity modes 'Z' is repressented by the ordinate, Any model
state on the abscissa can be said to be in geostrophic balance.
The curve 'M' is the 'slow manifold' and renresent a balanced
state of the modei. Its curved Fform is a reflection of the
nonlinear nature of the balance. 4t Z, ¥ —= 0, the non-linear
terms tend towsrds z2ro and the slow manifold becomes coincident
with the Rossby manifold. As 'Y' becomes large, the slow and
Rossby manifold diverge, suggesting that a high amplitude but
slowly evolving model state would be fqQr from geostrophic, The
line D represents the data manifold. It is the locus of all
model states which are obtained by kesping the spatial configu-
ration of one of the dependent variables (geopotential, wind)
fixed and varying the other variables,

Suppose we have a model state at point 0, on the data
manifold, It does not lie on the slow manifold, so that if '0Q!
is used as an initial state for the model, than gravity waves
of magnitude proportional to the distance of '0' from 'M' would

be excited. As a specific case, let us suppose that 'D' reprasents

os o8/=
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the wind manifold, i1.e. the spatial siructure of the wind field is
invariant along D. We assume that the wind observations are very
accurate but the observacions for g;oﬁoLential ig poor, LE we
performed unconstrained initialization, thus arriving at the point
'U', the original wind field would no longcer be fitted, Since we
hq@ Eonfidence in the wind obs=zrvationsg, the initialized state

'U' would be unsatisfactery.

A better method would be to £ind the intersection of the
data manifold D and the slow manifold M, This would imply that
the original wind observations are fitted and yet no high freguen-
cies would be excited in subseguent model integrations. This state
is denoted by the point 'C' and indicates constrained initializa-
tion. In practice there are obswrvations of both wind and height
fields distributed irregularly in space and time and with varying
accuracies. Some of these data will be inconsistent with the oths=r
data, so that it is impossible to fit dall the data and still be on
the slow manifold. The endeavour is to see that the data on which
we have maximum confidence f£its well, whereas the data whose

accuracy is poor, does not fit,.

The unconstrained initialization procedures can be sub-
divided into two classes, viz., (A)stagcic initialization
(B) Dynamic initialization,

(A)EEEEEE_EEEEEEEEEEEEEE : In this method, a wind lgw such as the
geostrophic relation or the balance equation is used. rhe wind
is derived from a stream function Hb.such that :
YV w ARV
=
where .V denotes the vsctor horizontal wind

The height field (#’) is then derived from the balance equation,

V¢ = - (V¥

such as :

Phe height field derived from the above eguation is in balance

with the rotational component of the wind field cnly, while the

e



divergaent component is toLally irmored,

This method was examined by Krishnamurti (1969) and
Kanamitsu (1975) and was Zound to =zuffer Lrom the usual problem
of adjustment in low latitudes. Krischngmurti found that this
takes roughly the eguivalent of 13 hours of integration, rduring
which time the divergent nart of the wind grows in magnitude and
vertical motions increase by an or.ler of magnitude, ‘fhe other

drawbacks in this method are as follows :

(a)A given wind field gives the same balanced height £field,
irrespective of the model states, Referring to Fig.3, we
see that in this mezthod the data point neither lies on

the data wmenifold, nor on the slow manifold and iz likely
to generate high amplitude gravity waves if used as input

to the model,

(b) The incorporation of physical processes(heat,friction
etc.) in this diagnostic approach is virtually impossible.
Even if this is done in an ‘oproximate way, it is dJdifficult
to maintain a balance state consistent with the moilel
eguations, i.e, maintain the data point on the slow manifolsd

of Fig.3,.

(c)The balanced height field is obtained from the solution
of second order partiel differential equation, whereas it
cccurs as a first order dififerential term in the model
eguations, This cre=zates inconsistencies between the balanced

field and the model solutions.

(B)Dyﬂimic_iﬁlkiéliEEEEEE-iPE-@?EEEg_l : In this method the model
equations were themselves used to gensrate the balanced field.
The height field, derived from the balance equation, and the
observed wind field were used acs initial data to integrate the
model 'N' time steps forward, The model was then intesgrated 'N'
time-steps backward from the initial time., The Euler time differ-
encing scheme was used in the integration process, which has the
‘property of damping high frequency waves. If'ALNrepresents the

value of U -component of wind at the Nth time step and Y, its

css10/~
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value at the inmitial time, Chen we have /@

s
P x 7 s ;_‘v
Wpmb, L = EB8e) (w4e) ]

Here At represent the time-step used and QJ} zsepregents the
angular frequency of a particular wave component in the =S
It can be seen that the damping is directly proportional te th
freguency of the wave. The amplitudes of the high-freguency waves

are heavily damped, whereas the low frequency waves are left relatively
unaffected, Each forward backward operstion constitute one cycle.

b PNAE amd by~ WAE

resp., were averaged to give the modified values of the field at

During the f£irst ten cyvcles the height fields at times

time, to . The wind field was restored to its initial wvalue &t
time ¢, . During the next ten cycles the wind fields were averaged
while the height flelds were restored to its walue at the end of
the previous ten cycles. The above operations were repeated upteo
forty cycles., The wind and height f£ields at the end of the fortieth
cycle, were taken as the balanced field and used as input to the
model for forward time integration., Sinha and Kulkarni (1982) performed
a number of numerical experiments with this method and found that the
oscillations of the area a=d mean height tendency was considerably
reduced in amplitude, as compared with those with the static initiali-
zation scheme, Fig. 4a and Fig. 4b, show, respectively, the height
tendency plotted against time, in the case of time integration performed
with initial data obtained with static and dynamic initialization
methods. The lesser amplitude in the ldttexr case suggests a reduced
presence of grawity waves. The area of integration of the model
extended from latitudes SON to BSON and from longitudes 950E to 1050E.
In these experiments it was seen that the boundary conditions plaved
an important role in the adjustment process., By putting 4= ¢ in the
eastern and western boundaries, a fietitious anticyclone developed in
the 24 hr. forecast f£ield, due to the reflection of the gravity waves
at the boundary, which inhibits the mutual adjustment process, It was
also argued that the unbalanced part of the energy propagates az inertia
gravity waves and should be allowed tou pronagate f£resly out of the
region of integration.

Theoretically, one <an include physical processes in this method
of initialization, but such an inclusion led to practical difficulties
because of the computational irreversibility of these processes.

FPor example, if the frictional t=rm is included, then Zuring the

well/—
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forward integration it dissipates energy, but during the backward
integration it produces amplification effect. Thus, small discripancies
of the solutions between the forward and the backward processes can be

amplified to a large difference,.

The (DI) method without incorporating simulated effects, was
successfully applied on the shallow water equations and the model was
integrated upto 48 hours. The area-mean mass divergence, (2?9 was
computed at hourly intervals and plotted as a function of time. It was
seen that the fluctuations of this term was much less as compared to the
fluctuations obtained by using only the static initialization method.
The area of integration of the model extend=d from latitudes SON ta 35
and f£rom longitudes 950E to 105°E. 1In this experiment 1t was seen that
the boundary conditions played an important role in the adjustment proce-
ss, By putting 19 = 0 on the eastern and western boundaries, a ficti-
tious anticyclone develcped in the 24 hr, forecast field, due to the
reflection of the gravity waves at the boundary which inhibits the mutual
adjustment process, It was also arguec that the unbalanced part of the
energy propagates as intertia-gravity waves and should be allowed to

ON

propagate freely out of the region of integration.

The main drawbacks in this method are as follows :

(a) It has a slow rate of convergence towards the balanced state

(b) It was pointed out by Okland that space differences in a grid
representatitn, greatly reduce the group velocity of the shorter
waves, leading to a slower rate of convergence to a balanced
state, Also damping of meteorological waves become inevitable,
causing weak atmospheric systems to loose their identify;

(c) It does not distinguish between the type of waves, but only
their freguencies, Thus gravity waves of large horizontal
extent may sometimes remain almost unaffected in this

initialization process,

4, NORMAL MODES INITIALIZATION

The set of equation 22%'2'10 admits thrse linearly independent solu-
tions for each wave vector R . These independent solutions are called
"normal modes" of the set of eguations,

The modes are as follows :

1. Geostrophically balanced mode® which turns out to be stationary
in this simple model.
cel2/f=



2, Two high frequency modes corresponding to propagating
gravity waves along the forward and backward directions
respectively. ©One can also view each normal mode as an
eigenvector y,@ corresponding to each of the three
elgenvalues :

A= B ;Af\/m ks vk

In normal mode initialization, the initial data are projected
into the normal modes, the coefficients of the unwanted modes are
set to zero and the balanced initial fields are recconstituted from
the remaining modes. If Eﬂ%) represent the initial data, it can
be expanded in the form

Z(%) - Zg,‘(f) exp (i)

=y
where Ei;(t) is the normal mode corresponding to wavenumber éi
Such an expansion of grid point data into the normal modes of the
model allows filtering in a more selective and rational fashion,
In the limit of infinitesimal grid interval, the expansion of initial
data is given by the Hough functions of Laplace's tidal theory.
In case of finite grid interwval it is necessary toc consider not
cnly modes related to the Hough modes but alsc computational modes
specific to the finite difference equations employed. The number
of normal modes for zZonal wave number is egual to the number of
grid points. It is known that the fewer grid points contained in
a wavelength, the less accurately the wave can be described, Thus,
when the normal mode index is egqual to or more than half the
number of grid points, this mode cannot be represented properly.
In multi=level models, the number of vertical modes is equal to
the number of levels used in the models., 1In applying the normal
mode initialization to a multi-level P.,E., model, the model is first
linearized about a basic state which is at rest, and the vertical
dependence is separated from the horizontal, through the definition
of appropriate structure functions. This precludes the inclusion
of mountains, because the pressure gradient in the vicinity of the
mountain would not be consistent with a basic state at rest,

oedl3/=
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Normal mode initialization sre of two kinds, viz. :

(a)Linear normal mode initialization, in which the obssrvational
data are expanded in t.erms of ‘he complete s=t of normal
modes and then the :2xpansiong, coefficients of unwanted
computational and'gravity' modes are set to zero. This metho’l
reduces the amplitude of th:z high fregueacy oscillation
during the initial stages of time integration of the model,
but they are regencrate:d labar jue to the non=linear
intz=ractions.

{(b)Non-linear normal mode initialization, in which the time
derivatives of the gravity mode coefficients are set egual
to zero, while the gravity mode coefficients are modaified
in such a way that the linear contribution to the tendency
of each coefficient compensate the contribution from'the
non-linear interactions becween all the modes. This can be

explained as follows ;

Referring to the conczptual representation of Le2ith, we
now proj=ct che erquations of the model on to its normal
mogdes. We obtain a sest of ordinary diffesrential equations

which can be written symbolically as :

L

B e Rk B P Ne] S A
Y e T R

‘N

where 2,Y are the column v2ctors of gravity mode and Rossby mode
expansion co=fficient, respectively; ,2; ,;h,are diagonal matrices
whose elements are the individual =igenfrequencies of the normal
modes; PV; ,fuf are the projections of the non-linear and forcing
terms of the model on the sets of normal modes Ef<and \/ respectively.
The terms —-iAiZ and - L.}.yY comz Erom the linear terms of the

model equations, which appear in this diagonalised form becauge

the normal modes are =ziganfunctions of the linearised eguations.

We follow the following steps, viz.

Step 1 : We apply linsar initialization, rhe subscript indicates

the ifﬁeration step

Z:O )‘\{:}-.:Y

o
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‘Step 2 : put Z=0 in Bqn.(4.1), to get

Z = N (2Y)/2

Step 2 : Repeat step 2 but use Z! instead of £
B os BLIEN A

This step is repeated until coavargence is obtained when Egon the

(o]

L.H.5. is equal to 'EZ' on the R.=E.85. within tolerable Iimits., We

shall dencte this valus 2' thus, £inally we hawve

EE:NEZﬁY%ﬂ '--h-4.3

For a f:-plane model, Leith has idsnltified ‘Egyas tha low Treguency

ageostrophic flow.

The task of obtaining the normal modes is quite simple for
a global or hemispherical model in the soectral forms, but creats
problems for a limiced area moiel, where some adaiitionzl boundary
mode coefficisnts have to be comoutad, Th-isze are derivad from the
boundary values, Otherwice periodic boundary concitions has to be

a solid wall.

2
é??‘

used or the boundary is Ltake

o

/

5 BOUNDED DRERIVATIVE METHOD

Kreisg (1979,1%80) dev:loped a general theory for filtering
motions of unwanted time scales from nroblems involving motions of
multiple time scalzs, as in the hyperbolic system of partial diff-
erential equations of atmospheric motion, This is done by first
scaling the parameters in the equations by thuir respsctive charac-
teristic scales. The terms that contributs to large time Jderivatives
are then identified and constrained o =naure that the Lime Jderi-
vatives are of the order of the slow time-scales In the case of
atmospheric motions the slow waves have time Zerivatives which
are of orderCﬂiﬂm@s their snace derivatives while the fast waves
have time derivatives of order ( i//ﬁb ) times their space deri-
vatives, where Ko s i3 the Rossby number, The time deriva-

tives of the fast waves are constrained to be of order 1. Eme

«ealB/-
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The larger numbsr of higher ord=zr time derivatives for which this
condition is satisfied, the =moothaer is the time evolution of the
solution., It was also shown by Kreiss thet if this conlition is
satisfied at the initial time, then it confinues to bz satisfied
for all times,

Browning, Kasahara and Krceiss(1980) avplied this method to
the shallow water eguations, which included orography. The anpro-
priate eguations are as follows :

Up + UNH VU + 9}1}1 = i

V, + Uy + VU, + ghy + LI

v Bkl (sz[)y + Ay {'Mw,

i\

. SRS )

ty ) = (UH)x - (“”H)y e

il

—+

E

where U,V are the horizontal components of v2locity field, "(‘o is
the mean height of the homog=neous L£luid above sea level,,{la
the deviation of the free surface height from /)f” H["’vy/ls the
elevation of orography,? is the acceleration due to gravity and

Jf is the corlo]As parameter which is assumed to wvary linsarly
with ’?

After scaling the parameters with th=2ir characteristic

.scales, Eg. (5.1#)becomes :

Uy + UMWy + 1}%7 + 5'1[¢ — /-v] =
4}*%1}1+1}1f?—&€[65 +7(f1[j:0 e

b+ (MP) + (”“415) ¥oE 535]['1(7” w]
-£ fud -vd] 0
£

Here ¢'—'—-— where 'D' is the repres:entative magnitude of the
deviationjof the free-surface height [rom its mean and _‘iB - Z Ho
being the mean elevation of orography. & is the Rossby numbar.
Putting f = f, +£By where &= 'a’c and s2perating the terms con-
taining some power of g as lt:: coz2fficient, we get

U, + 'M?‘fx“f"!}u-?_ﬁ’yt} + Q4 = 0

/wt+u1}1+ﬂ-1ﬂ7+ﬁyu _{-/6 = 0 ...—5‘3

be + ’b(-qg_x -.'-'Ua;; + ¢'(ﬂx+1ﬂ?)4f = L

eeell/~
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we assume that a,b,c are smooth functions of x and y. The first order

time derivatives 1, , v&’/ﬁt_ are 0[1) ; Af and only if, the
following conditions are satisfied

ed.
?R." 7601} = EA e
?54? + Aw = EA ' =

- iy ‘$L§E +-1)§? i
U Uy /qu( )

Put in a matrix form we get :

o o

i g

9 2 ’i[ﬁfﬂ’@j&—‘ff
G e T

wlicge. | Sas (/_.g_é) o S = ’Z/-x-r-'lf?

The operator on the L.H.S. of Eqn.5.5 is a singulsr operator and
so Eg.(5.5) has a solution if and onlv if

_at,?’..c/ﬁgL = 7[;*5’_;/%5‘;4' vﬁﬁ;dtdéc/is

This is obtained by differentiating a and b with respect to y and
X resp., and substituting for ( Ug,

c
f—gq?

Fle Rl

07) in the eguation for ¢ . From
Eqg.5.3 we see that U, , é—c— ??_,,{, sack

if and only if, Q.,4, > » @ and (¢,
Considering the Jerivative c

are of order unity,
are of orsder unity.

» we have
z . -
AR LR S U
From the first two eguations of E¢.5.3, we have
B
51_ = — 7 "“ﬁ’yt? - Fu —r-,?[?{xvy“uyv’l]

- U, - vJ, Y
where = 'l},L—q,{;?

Substituting in Eg.5.7 we gat :
<l 7 [V gl n R S YRR
+'vc{5 —ffj - £ [1{&55{ 3 ré;;]
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...1?‘_
or
—53@ = é[v‘#—ﬁy{—fﬁ’m- 2§ Unth = L(ﬁﬂ.{f—k wfkﬂf‘a;’“fr/
—[ut§7¢+1&@] e R

In an eguatorial /f -plane, £;= 0 and D = 10. Therefore

the divergence is ‘one order of magnitude less i.e.

el o [ [ it tatituc

In this case the R.H.S, of Eg. 5,8 does not contain any terms of
order £ . Now, negleckting terms of order £f?and less we have the
final constraint for computing i¢' in terms of the wind component,
It may be seen that the R.H.S5. is a geaeral 2lliptic equation whose
solution at each grid point would yi=ld the balanced mass ani wind
field. This solution when used as input to the model, is expected
to maintain the solution in the slow time scalz, i.e., the path of
the model states would bz along the slow manirold 'M' of Pig.3.
Since thers are two gravity modes to control, if is desirable to

apply tw> constraints for proper ilnitislization.

Kasahara (1982) applie:l this technicue to a multi-level ori-
mitive eqyuation model for the tropical region, in which friction and
heating terms ware also incorporated. The geopotential field was
exprzssed as a sum of the hyirostatic and non=hyirostatig part.
Defining the magnitwle of the frictional terms as ]F/ = €%£é‘
where Cb is the drag coefficicnt whose value is}b_s, 'a' 4is the
thickness of the boundary laver, and Ve is the surf=ce wind speed
and diabatic heating term by § = C?:ghwhere 47T is change in
temperature during a time interval 44 = He scaled thase terms so
that they were both of corder unity, &pslying the bounded derivative
principle, he found that the wvertical velocity field required to

balance the given heating ratz initially is given by

25 . g B B 5.9

(%)

§p
where k:.__r-'g__ - e 9&&_ ‘é_
G C R

voe LS/
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where 5? represants the dimensionless acopolential of the standard

distribution 15 c% .. BY

=
o
m

atmosphere, whose poLbzniial tempzraita

(2}

solving & similar set of constrsints ag in the 2-9 ¢

3 1582, he obtzined
L \ (] .
two elliptic eguations, one for ?5 and the other for &/ , whi
ware solved simulcaneously te yisld the Jdesired bolanced inikial

state. The only information that is taken Zrom the initial 4date

' |

and d&'. Than the
Gt

initial ) —-fi=ld is computed from Ec. (5.9) and a similex

are the rotational part of the vzlocity, Qi

equation for divergence, yields the divergence Efield,

6y COMPARISON OF fHE B.Jd. AN N M. METHOZS

The basic requirements of any good initialisation scheme
are the following :

{(a)It should have the ability to suporeses high freqguency
gravity waves,
(b)It should be zble to provide consist=nt information to make
up for dEficiencies in the obscervation network, e.g. the
divergent wind f£ield or vertical motion field should be faith-
fully reproduced, consistent with synoptic theory. Tha vertieal
motion field should also svolve slowly and smoothly in time.
(c)The computation time should be small as compared to the
time for integrating the model over the recguired time interval.
Judged from the viewopoint of these reguirement, we now discuss

the advantages and disadvaatages of both the schemes.

The non-linear N,M. method was found to be very suceessful
in suppressing high f£recuency waves, when applied to a model of
the complexity of the ECMWF mocel, It was successful in generating
upward motion ahead of the warm and cold fronts and dgownard motion
behind the cold front, consistent with synoptic theory. It was also
capable of generating cross-isobar £flow in the model boundary layer

and realistic mountain induced va:rtical motion.

However, when the unconstrained kMacheuhauer scheme was
applied to the ECMWF model, the scheme did not convirge when con-
vective heating and large scale condensaticon were included in the

non-linear forcing. To avoid non-convergenc=, mest of the model

00'20/-
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physics was not included, but this resulted in the suppression of
the Hadley cell and the div:srgence in the tropics by a large factor.
Puri and Bourke (1982) proposed a morlified scheme of non-linear
normal mode initialization by excluding these modes from the ini-
tialization process, which are signific:ntly affected by convective
‘processes. ‘This schemﬁ<?g§diéle to maintain the strength of the
Hadley circulation, 3 au wx(1982) developed a non-linear I
scheme, which is a mocfified wvzsrsion of Machenhauer's scheme and
included complzte physics of the modsl in the initializétion
process. He parformed imtiragtion with Eg.4.1 by putting 'Z' not

equal to zero; but to a small wvalue, which reduce by half at each

NE(Z'JY) e Zﬂ"j
1A

igt=ra¢tion, i.e.

i

= 4

whare L denotes the igpteraetion st:p, Thisz method was found to
preserve the divergence field oetter than in the adiz2batic v:rsion.
Another “rawback in this method was that the separation in frequency
between Rossby and gravity modes of the same eguivalent depth,

is small in the tropics, making iientification dHiflicult,

Semazzy and liavan(1988) male 2 comparative study of the two
methods, using real time data acs input to 2 barotropic model, Thewv
chose the Asiatic area bounied by latitudes 2°s and 62°y and
longitudes GOOE and 120°E. This region contains an intense high
pressure area c=ntered around BOOH, QOOE, known as the "China high",
This high was ascribed to be the result of computational problams
arising out of the interpolation of hzight data between sigma and
pressure coordinates., This high was found to be absent in the field
initialized by BDI method, because it makes use of vorticity to
construct the initial velocity f£ield for starting the BDI iterations,
and the vorticity value iz kept unchanged thereafter. The same

, features were also noted in the KNMI method. However, valey(1978)
suggested a constrained variational anproach of the HMI method, bw
assigning different weights to the height field data, in the vicinity
of the "high". A similar method has not been successfully used in

eae2l/-



the BDI. The two methods gave very similar results in the case

of a barotropic model.

Bijlsma and Hafkenscheid (1986) made a comparison of the
two methods using the ECMWF, barcclinic grid point model employed
by Temperton and Williamsen (1979). This is s limited area model
extending from latitude ZOON to 4oon and longitude 200w to 2DOE.
They also found that both the methods are virtually identical
in their effect upon the initial fields, but the BDI method

required less computation time.
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