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Abstract

The algorithm described here gives a procedure fo pline

interpolation technique. This algorithm was successfully used on a
number of different data sets. Results of two of these cases are
presented in the text. Algorithm has provision to interpolate the data

on regular and irregular grids. The ANSI FORTRAN-77 code of this

algorithm was written, developed and tested on ND-560/Cx supermini

computer system.
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Introduction

Spline 1is a flexible string used in drawing curves. Spline
functions constitute a relatively new subject in analysis. The theary
of splines and experfence with their use in numerical analysis have
undergone a considerable degree of development in the recent past. The
natural starting point for a study of spline functions is cubic
spline. Its simplicity motivates much of its applications to the

problems in numerical analysis. The spline proves to be an effective

tool in the process of interpolation. The spline approximation was
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first reported by Schoenberg (1946). This technique is one of the most
widely used techniques for interpolation. The algorithm discussed here
has options of giving interpolated output on both regular and
irregular grids depending upon the computational requirements of the

problem. The ANSI FORTRAN-77 code of this algorithm is listed in

Appendix-A,

Methodology

The methodology adopted in this algorithm is similar to Carnahan
and Wilkes (18973), Ahlberg, Nilson and Walsh (1967), with some minor
variants. Input to the FORTRAN code is the values of the base points
Xy aXgyeew o a Xy and the data available at these base points. In
literature, base points are sometimes referred to as knots. Let data
be évailable at N knots viz. XqXguewe Xy be f(xll.f[xz]....f(xN]. The
domain [xl.xN] is considered as a combination of (N-1) subdomains
) i s 1S {xi'xz}'{XZ'xS]'""[XN—l’xN} where width of any ith domain
(xi.xi+l) is represented by hi = Ky qr¥ps The procedure involves
fitting a cubic polynomial pS.i(X} in the domain {Xi‘xi+1] for
i=1,2,...N-1. According to the notation used in this algorithm, the
cubic polynomial ps‘i[x] is the one which is fitted in the interval
bounded by knots X4 and Xi1e With this notation we can have utmost
(N-1) polynomials in the domain (xl.xN]. Any cubic polynomial in

general, can be expressed as
P(x) = Ax" + sz + Cx + D (1)

Eg.(1) shows that the complete evaluation of any cubic polynomial
involves evaluation of four constants, as A,B,C and D in Eg. (1), which

requires a set of four equations. Since in the domain (x,,xy ), we have
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(N-1) cubic polynomials, so the total number of unknowns (coefficients
of N-1 cubic polynomials) become UN-4. For any unique evaluation of N-
1 cu?ic polynomials, we must therefgre‘have a set of 4N-4 simultaneous

equations. These equations are obtained by the following procedure.

While fitting any cubic polynomial ,P3 i(x}, in the interval
]

(xi,xi+1} we must ensure that the data values generated by the fitted

cubic polynomial ,P3 i(x), at the knots x, and x, , must be identical
]

with the values f(xi) and f(x ), respectively. This constraint leads

i+1

to the following 2N-2 equations.

E=llls2sierae=1 (21}
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f{ki)

pg,i(x ) = f(xi+1) O SR (- WS (2.2)
Slope S of any curve y=f(x) at the point x is defined by the following

relation.

S = [df/dx], | (3.1
Similarly, curvature of the curve y=f(x) at the point x is computed

y,Edwards(1961), using the following relation.
CURV = [df/dx?][1+(df/dx)2]173/2 (3.2}

While fitting cubic polynomials, p3 i(x), in the domain (xi,xi+1) we
-

must also ensure that slope of the cubic polynomials P3 4 1(x) and
e
P3 i(x) must matech at the interface knot x,. This leads to the
3
following set of N-2 equations.
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Py yoqityl = 0L (G s 52,3, Kelist (4.1)
Here prime denoted first order derivative. After matching the slopes-
of the two cubic polynomials, i.e. first derivative, at the interface
base point, Xiy We find from Egs.(3.1) and (3.2) that the matching of
second derivative at the interface base point Xy will ensure matching
of curvatureé of two cubie polynomials at the knot X - This leads to

the following set of N-2 equations.

L\

W
p3,i_1{xi) - p3’i(xi) $ E=2253 04« wugN=1 (4.2)

Here double prime denotes second order derivtive. Egs.(4.1), (4.2)
account for all the interior knots of the fundamental domain (x,xN)
i.e. excluding the bounding knots X, and Xy For these two bounding
knots X4 and Xy we prescribe the condition that curvatures of the
cubic polynomials p3’1(x) and p3,N_1(x) are zero at x, and Xy,

respectively. This condition leads to the following two equations.

131

p3,1(x1) = (4.3)

p;,N_1(xN) = 0 (4.4)

Set of Egs.(2.1),(2.2),(4.1),(4.2),(4.3) and (4.4) give in total
[{N;1} + (N=1)+ (N-2) + (N-2) + 2] i.e. UN-U which is the required
number for uniquely solving the set of UN-U4 simultaneous equations
represented by the coefficients of N-1 cubic polynomials. From Eq.(1)

we find that P"(x) represented by

P"(x) = 6Ax + 2B (5)
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is a linear function of x. This shows that for any cubiec polynomial,
"
. p3’i(x), p3’i(x) will have a linear variation in its domain (xi,xi+1)
implying that the function p; ;(x) can always be obtained by linear
£

interpolation as in the following equation.

A\ "

p3,i(x) = p3’i(xi) + DELTA ¥ (x-xi) (6.1
where
W " =
DELTA = [p3,i(xi+1) - p3’g(xi)][xi+1-xi] (6.2)

Here DELTA represents the rate of variation of the linear function
1Y
P3 i(x) in the domain (xi,x +1). Egs.(6.1),(6.2) on some algebraic
; :
1 0
adjustments give the following functional form of P3 i(x); L=l e
2

N-1.

- x)q;jlhy (7)

11
Py (x) = [lxy 4

+ [ - xy)ay, 410y

where

Ry Bl a % dhiom e ] : (8.1)

" n

p3’i {xi) = p3’1_1(xi) R I e R el L 5 (8.2)

9y

For evaluating the functional form of the cubic polynomial, P3 i(x),
H
Eq.(7) is integrated twice in succession giving the following

relation.

p3’i(x) = - Qi(xi+1 - x)2/(2hi) + Ax + B (9,1)
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where A and B are the constants of integration and are obtained by

using the relation P3 i(xi) = f(xi) = fi' The following are the
expressions of these constants A and B.
-1
Ar-= (fi+1 - fi) hi ¥ hi(qi - qi+1)/6 (9.2)
and
B = X, [hi qi+1/6 ~ fi+1/hi]
- xi+1[ hiqi/6 - fi/hi] (9.3)

Egs. (9.1),(9.2),(9.3) give the complete functional form of the cubic

polynomial p3,i(x) in the following form.
Py 1 (%) = ag(xg, 1 -x)37(6n,) + a; 1 (x-x;)3/(6n1)
# [fg afhy = hoa, /00(x=x,)
+ [f‘i/hi - hiqifﬁ](xi+1 - Xx) (10)

Eq.(10) gives the explicit functional dependence of the cubic
polynomial ps'i(x). For any numerical evaluation using the Eq.(10), we
must first evaluate the values of 93 (second derivative of p3,i) for
all i=1,2,...,N. This is achieved by  differentiating the cubic
polynomials p3'i(x) and p3’i_1(x) and evaluating them at the common
knot x,. On matching pé’i(xi) and pé,i_1(xi) at the commoﬁ knot x, in

accordance with Eq.(4.1) we get the following recurrence relation for

q; 3 =23 s N1,
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(hi_.i/bi) qQ; 4 *+ 2(1+hi_1/hi) CREE NI

6/ [(f, -£.)/hy ~ (£, 4)/hy ] (11.1)

Prescription of zero curvature at the bounding knots of the
fundamental domain (x1,xN) gives us the following additional

felations.
q1 = 0 (11.2)
ay = 0 El1.3)

Eq.(11.1) represents a set of N-2 simultaneous linear equations and
these equations possess a tridiagonal structure. These equations can
be solved using matrix algebra but still the better approach will be
the one which takes care of the tridiagonal feature of these
equations. Systems of tridiagonal equations occur notably in the
finite difference solution of ordinary and partial differential
equations. For furthr computations, we reexpress these equations in

the following form.

b2q2 + q3 = 02
a3q2 + b3q3 * gy = 03
ayas + byay + 45 = Cg 1)

By g F Baly FGpg = Gy

. * *

+ b

aN-19§-2 N-19N-1
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where ai,b.,c.

involve h.,h. it eesl i
i i £

ErTe e

After a simple grouping of these equations it is seen that these

equations posses a recursion solution of the following type.

‘

qi = Yl e ql+1/21 H i=2,3|---N—'2 (13)

From the first equation of Eq.(12) we find that

Z. =b (14.1)

and
/Z (14.2)

Substitution of Eq.(13) in the ith equation of Eq.(12) gives tHe

following recurrence relations for ‘fl- and Zi'

=<
Ll

=By wra Ty (14.3)

A R T (14.1)

1

On using Eq.(13) in the last equation of Eq.(12) and using Egs.(14.3),

5 \
(14.4) we get the following relation.

= | W ) (14.5)

From Egs.(13), (14.1),(14.2),(14.3),(14.4) and (14.5), we find that
the solution to the set of N-2 simultaneous linear equations

represented by Eq.(12) is the following. i

qy = 0.0 {15.1)
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Ut ™ T
qy :-Yi - qi+T/Z R e e
qq = 0.0
WHERE
22 = QL , (152 )
Y, = C,/2,
2; = by - a;/Z; 4 3 i =3,4,...,N-1
1, = (o, = ay T, 202, '3 1=3, A, . caplini
AND
ai = hi_.lf'hi (15.3)
bi = 2(1+ai) o
= 2(1+h;_,/h;)
]
G, = 6 B L o RN N R - )
i*= i i+ §Arls i Ve T

where set of equations in Eq.(15.3) are valid for i=2,3,...N-1. Values
of‘qi thus obtained are substituted in the cubic polynomial, P3 i(x),
r !

of Eq.(10) for interpolating the value at any user specified base

point x in the domain (xi+1,xi).

Results

The results of application of this algorithm to two data sets are



=N
presented here with ‘a provision of ‘interpolating data on both regular

and irregular grids.

Data set (i) : In this case, the FORTRAN code of the algorithm ,listed

in the Appendix-A, was run with the INPUT generated by the FORTRAN
library function ALOG16(X) for a set of base points ,X, generated by
the FORTRAN loop X(IL) = PLOAT(T®I)%0.1 Efor I=1;2,+.+s410s These base
points (knots) were used, in generating the values of the initial data
by FORTRAN loop f(X)= ALOG10(X(I)) for I=1,2,...,10. The algorithm was
run te interpolate the dapa values on both regular and irregular
grids. Table 1A shows the INPUT for this data set i.e. set of base
points X and the corresponding data values, f(X), at these X.For the’
regular grid we prescribed XMIN=1.15 , XMAX=10.00 and DELX=1.0.
Table 1B shows the values of the base points of this uniform grid with
the corresponding values of the interpoclated and the actual
values.Results show accuracy upto 3Pd decimal places. Table 1C shows
the OUTPUT analogous to Table 1B but for the irregular grid.
Interpolation was carried out at the additional knots
X=0.12,0.48,1.08,1.92,3.0,4.32,5.88,7.68 i.e. 8 iregularly spaced base
points. Information recorded in Table 1C shows the values of base
points of the combined grid i.e. initial plus the irregular grid of
these 8 points. Results show a reasonable accuracy in the interpolated

values.

Data set (ii) : The annual global mean vertical profile of water

vapour mixing ratio (gm/gm) in the troposphere is consedered fer
generating INPUT for this case.This profile,Katayama(1974), is defined

as under.
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6

5 = 3.83
f(p) =/ 2.5%X107° [p/100] /:LIDDML>>F>"OOMJQ

-6 :
2.5X10 ; Fg\oomb (16)

For INPUT to the algorithm for this case, we considered X (=p) from
100 to 1000 mb at an interval of 100 mb. Table 2A is analogous to
Table 1A but for data set (ii). Like the earlier case the algorithm
was run for interpolation on both regular and irregular grids. For the
former case we prescribed XMIN=150 , XMAX=900 and DELX=150. Table 2B
shows the results for this class of interpolation.In this case some
base points are common in the original and the grid of interpolated
base points.The interpolated values are found to agree with the actual
values upto an decimal place. For interpolation on the irregular grid
we choose these additional irregularly spaces Kknots 1.e. X=
175,250,400,475,590,700,850,950. Table 2C shows the results analogous

to Table 1C but for data set (ii).Results show an accuracy upto an or

rd

3 decimal places.

It is quite possible that the precision of the interpolated
values generated by this algorithm may increase further if we run the
FORTRAN code of this algorithm with DOUBLE PRECISION.Instead of
comparing the interpolated wvalues with the corresponding values
obtained from any standard FORTRAN mathematical library like
S5S5P,NAg,IMS1 etc. we have compared them with the actual wvalues

generated by the corresponding functions i.e. ALOG10(X) and f(p) of

Eq.(16).



Epilogue

The algorithm described in this text can be used in any numerical
problem requiring any of the two types of interpolations. FORTRAN code
of this algorithm ,listed in Appendix-A, has some validation checks.
These validation checks ensure that the algorithm is not subjected to
any corrupt (i) data set or (ii) interpolation requirement. Following
validations checks are incorporated in the FORTRAN code.
(1) Correctness of the value of N is checked in SUBROUTINE UNIFRM
and SUBROUTINE VARBLE.
(2) Correctness of the value of NM1 is checked in SUBROUTINEs ABC
QQ and P3X.
(3) Correctness of the values of XMIN , XMAX and DELX are checked
in SUBROUTINE UNIFRM.
(4) Correctness of the values of XW(1) and XW(LAST) are checked
in SUBROUTINE VARBLE.
Execution of the FORTRAN code is aborted if any of these checks gives

FALSE result.

Acknowledgements

The autheor thanks the Director,IITM, for providing facilities for
carrying out this work and to Dr. S5.K.Mishra for encouragement. Author
also thanks Dr. S.Rajamani and Dr.(Mrs.) P.S.,Salvekar for reviewing
this work. Author thanks Mrs. S5.S.Naik for typing the manuscript and
the DRAWING SECTION of IITM for preparing tracing of the figure.

Utilisation ef L[ITM!'s ND-560/Cx supermini computer system is

thankfully acknowledged.



—A\R —

References

Ahlberg, d.,H., Nilscn,E.,N., and Walsh,d.,L.,1967 : The <theory of

splines and their applications, Academic Press, pp.284,.

Carnahan,Brice and Wilkes,0.,James, 1973 : Digital computing and

numerical methods,John Willey and Sons,Inc.,pp.477.

Edwards, Joseph,1961 : An elementary treatise on the differential

calculus,Macmillan & Co. Ltd.,pp.529.

Katayama,A.,1974 : A simplified scheme for computing radiative
transfer in the troposphere,Tech.Rept.No.6,Deptt. Met.

UCLA,pp.T77.

Schoenberg,I.,J., 1946 : Contributions to the problem of approximation
of equidistant data by analytiec functions,Quat.Appl.Math.,4,45-

99,112-141.

B R



Al —

APPENDIX-A
LISTING CF ALGORITHM

A FORTRAN=77 ALGORITHM FOR CUBIC SPLINE INTERPOLATION
FOR REGULAR AND IR=-REGULAR GRIDS

ssee DESCRIPTION OF VARIABLES auss
wess SCALAR VARIABLES eues

N ¢ SCALAR VARIABLE REPRESENTING NUMBER OF DATA POINTS FOR

INITIAL DATA SET (>3).

NM1 : SCALAR VARIABLE REPRESENTING NUMBER OF DATA POINTS.
(NM1=N=-1).

XNEW : SCALAR VARIABLE REPRESENTING VALUE OF THE EASE POINT (KNOT)

FOR INTERPCLATING DATA.

XMIN : SCALAR VARIABLE REPRESENTING THE LOWER BOUND FOR REGULAR
GRID INTERPOLATION.

XMAX : ° SCALAR VARIABLE REPRESENTING THE UPPER BOUND FOR REGULAR
GRID INTERPOLATION.

DELX 2 SCALAR VARIABLE REPRESENTING THE INTERVAL FOR REGULAR
GRID INTERPOLATION.

NR H SCALAR VARIABLE REFRESENTING THE NUMBER OF BASE POINTS IN
THE INTERPCLATED DATA.

NW : SCALAR VARIABLE REPRESENTING THE NUMRER OF BASE POINTS FOR
INTERPOLATION IN THE IR-REGULAR GRID.

wess ARRAY VARIASLES sess

AsBsC : ARRAY VARIABLES REPRESENTING COEFFICIENTS OF.QM'S.
(SEE TEXT). '

YoZ : ARRAY VARIABLES OF RECURRENCE SOLUTION (SEE TEXT).

F : ARRAY VARIABLE OF SIZE N REPRESENTING INITIAL DATA.

Q : ARRAY VARIASLE REPRESENTING SECOND DERIVATIVE OF THE
CUBIC POLYNOMIAL AT N KNOTS X1,X27esssXNa

X : ARRAY VARIABLE OF SIZE N REPRESENTING N KNOTS IN ASCENDING
ORDER OF THE INITIAL DATA.

XwW :  ARRAY VARIASLE OF SIZE NW REPRESENTING NW KNOTS IN ASCENDING
ORDER FOR INTERPCLATION IN THE IR-REGULAR GRID.

XR : ARRAY VARIABLE OF SIZE NR REPRESENTING NP KNOTS IN ASCENDING
ORDER FOR - THE INTERPOLATED DATA IN THe IR-REGULAR GRID.

RESULT : ARRAY VARIABLE OF SIZE N REPRESENTING INTERPOLATED DATA IN

THE INTERPOLATED GRID OF SIZE NR.

H t ARRAY VAPIABLE OF SIZE NM1 REPRESENTING DIFFERENCE BETWEEN
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SUCCESSIVE KNOTS (X&-%1)2(X2~X2)20as

eoss DESCRIPTIEN OF ROUTINES awaa

ABC : TO COMPUTE CA) THE ARRAY CCEFFICIENTS Al.B8TI & CI
FDD I= 2!31-1-/“”1
(5) THE ARZAY COEFFICIENT HI FOR I=1,2,...,NM1

YZ : TO COMPUTE THE ARRAY COEFFICIENTS YI & II CF THE RECURRENCE
SOLUTION FOR I22,3/..0-,NM1. '

Qs : TO COMPUT® THE ARRAY VARIADLE @ REFRESENTING THE VALUES OF
THZ SECOND OERIVATIVE OF THE CU2IC POLYNOMIAL P3(X) AT N
dASE POINTS X1/s/XZ2reserXNs

P3X TO DO THE INTEKRPOLATION AT THE BASE PUOINT XNEW.

UNIFRM : TO INTERPOLATE DATA IN THE REGULAR GRID.

VARBLE & TO INTERPOLATE DATA IN THE IR-REGULAR GRID.

- e S S e e e e S R S e e

SUBROUTINE UNIFRMCF NAXrXMIN,XMAX,DELX,RESULTANR)
DIMENSION FOMN) XCN) L H(33),QC4C),AC2:38),5C2:39),C(2:23%),
& ¥ (223902262232 RESULTCG)
IF{N.LE-3) STOP ' INSUFFICIENT DATA CN < 4) 1| JOE ABDRTED was'
IFCCAMINGLTaXCT1)) e DR (XHMAXLGTLX(N))) STOP ' IMPROPER XMIN & XMAX !
NMT=N=-1
CALL ABC(X,F N sA,R,CohHANMT)
CALL YZUA B2 CarNMtrYaZ)
CALL QS(Q,N-.YrZ o NM1)
NR=0
DO 1 XX=XMIN,XMAX,DELX
NR=NR+1
1 CALL P3XCRESULTINZ) ,F,XsQsNsHANMT,XX)
RETURN
END
SUBROUTINE VARGLECF NsXsXW NdsRESULT,XB,NR)
DIMENSION FON),X(N),H(39),Q(40),A(2:39),8(2:39),0(2:39).,
& Y(2:32),202:39),RESULTCAU) 2 XW((NW),G(4D),XR(L0)
IFCOXWET) alTaX (1)) aORW(XWCNW)LGTLXCN))) STOP ' IMPROPER RANGE XW'
NM1=N=1
CALL ABC(X,FsM,A,B-CrH-/NMT)
CALL YZCA,B,C rNM1,Y2D)
CALL QS(Q/N,YrZ-,HMT)
DO 1 I=1,NW
1 CALL F3X(G(I)zF;K14:N:H{NM1zXh(I))
NR=N+NW
K=1
NF=1
NG=1
DO 5 L=1,NR
IFCXCNF)=-XWINR)) 2+,4.,3
2 RESULTC(K)=F(NF)
XRCK)=X(NF)
NF=NF+1
K=K+1
IFINF=N)5,5,6
3 RESULT(K)=G(NG)
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XRC(KI=AWING)

NG=NG+1

K=K+1

IF(NG=NW)5,5,7

RESULTC(K)=F(NF)

XR(K)=X(NF)

NG=NG+1

NF=NF+1

K=K+1

CONTINUE

NR=K=1

RETURN

DO 8 L=NF«N

RESULT(K)=F(L)

XRCKI=X (L)

K=K+1

CONTINUE

NR=K=1

RETURN

END

SUBROUTINE ABC(X,F,N,A,B,CrH,NMT)

DIMENSION F(N)tK(NJfA(EENM1)rB(Z:NM1)IC(2:NM1)rH(NM1)
IF(NM1.NEL(N=1)) STOP ' IMPROPER VALUE OF NM1 ! JOB ABORTED sas
D0 1 I=1,NM1

HCI)=XCI+1)-X(I)

DO 2 I=2,NM1

ACI)=HC(I-1)/H(I)

B(I)=2.%(1.+ACI))
C(I)=5-*C(F(I+1)'F(I))/H(I)+(F(I‘1)'F(I))/H(I'1))/H(I)
RETURN

END

SUBROUTINE YZCA,B,CoNM1,Y,1)

DIMENSION A(Z:NM1)aE(E:NM1)1C(2:NM1)rY(Z:NM1)IZ(2:NM1)
2(2)=8(2)

y(2y=c(2)/z(2)

D0 1 I=3,NM1

ZCI)=BCI)-ACI)/Z2(I-1)

YOI =CCCI)~ACTY*Y (L=4)2/2 012

RETURN

END

SUBROUTINE QSCQsN,Y,Z,NMT)

DIMENSION QCN),Y(2:NMT1),ZC2:NM1)

IFC(NMT<NE«(N=1)) STOP ' IMPROFER VALUE OF NM1 ! JO3S ABORTED «a.'
@(1)=0.

QlN)=0.

QCNMT)=Y(NM1)

DO 1 I=NM1=1,2,-1

QLT I=Y(T)—RCT+ LT)

RETURN

END

SUBROUTINE P3X(VALUE,F,X,Q,N,HsNMT,XNEW)
LOGICAL HERE

DIMENSION FO(N),X(N)Y,HINMT),Q(N)
IFCNM1.NE.(N=1)) STOP ' IMPROPEZR VALUE OF NM1 ! JOB ABORTED sus'
DO 1 I=1,N

IF(XNEW.EQ.X(I)) GO TO 4

CONTINUE

DO 2 I=1,NM1

HERE=CXNEWGTaXCI)) «AND« CXNEWLLTXCI*1))

IF(HERE) GO TO 3

CONTINUE

STOP ' SOMETHING WRONG WITH THE LOGIC ! CHECK IT UP s
A=QCI) A (X CI+T)=XNEW)**3/C(6.*H(I))

~

B=Q(I+1) % (XNEW=X(I))**3/ (6. *H(I))
C=(XNEW=XCI))*(FCI+1)/H(I)=H(I)*QCI+1)/64.)
D= (XCI+1)=XNEW) *CFCI)/HCI)=H(I)I*u(I)/64)
VALUE=A+3+C+D

RETURN

VALUE=F(I)

END
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Table 1A : Values of the base points
and the corresponding data
values f(x), used as INPUT

for Data set (i)

X f(x)
0.1 - 1.00000
0.4 - 0.39794
0.9 - 0.04575
1.5 0.20412
25 0.39794
3.6 0.55630
L. 0.69019
6. 0.80618
8.1 0.90848

10.0 1.00000




Table 1B : Values of the base points x, with the corresponding values
of interpolated data, f(x), and actual walue, F(x), for
interpolatlion on. @& regular grid wlth = IMIN = 1.1%,

XMAX = 10.0 and DELX = 1.0 for Data set (i)

x £x) F(x)
1< 15 0.04355 0.06069
2505 0.33788 0.33243
3.15 0.49643 0.49831
) e 0.61891 0.61804
5. 15 0.71160 0.71180
6.15 0.78877 0.78887
Tets 0.85455 0.85430
8.15 0.91112 D= 9% 115

D15 0.96067 0.96142




Table 1C : Values of the base points, x, with the corresponding values

3

of interpolated data, f(x), and the actual values, F(x),

for interpolation on a irregular grid for Data set (i)

X f(x) F(x)
0.10 - 1.00000 - 1.00000
012 - 0.95491 - 0.92081
0.40 - 0.39794 - 0.39794
0.48 - 0.29210 - 0.31875
0.90 - 0.04575 - 0.04575
1.08 0.01766 0.03342
1.60 0.20412 0.20412
1.92 0.29009 0.28330
2+,50 0.39794 0.39794
3.00 0.LT485 0.47712
3.60 0.55630 - 0.55630
U, .32 0.63625 0.63548
4.90 0.69019 0.69019
5.88 0.76917 0.76937
6.40 0.80618 0.80618
7.68 0.88556 0.88536
8.10 0.90848 0.90848

10.00 1.00000 1.00000




Table 2A : Values.- of the base points x
and the corresponding data
values, f(x) used as INPUT

for Data set (ii)

——————————— i ——— ———————————————————

x £(x)

100 0;25000 x 1072
200 " 0.20000 x 107"
300 0.67500 x 10"
400 0.51000 x 1073
500 0.99609 x 1073
600 0.17212 x 1072
700 0.27332 x 107°
800 0.40800 x 1072
900 0.58092 x 102

=B

1000 0.79687 x 10




Table 2B : Same as Table 1B but for XMIN = 150, XMAX = 950, DELX = 150

for Data set (i)

X fx) F(x)
150 0.18905 x 10~ 0.84375 x 10°
300 0.67500 x 10~ 0.67500 x 107"
450 0.74343 x 1073 0.72615 x 1073
600 0.17212 x 107° 0.17212 x 107%
750 0.33630 x 1072 0.33618 x 1072
900 0.58092 x 102 0.58092 x 10~2
Table 2C : Same as Table 1C but for data set (ii)
x £(x) F(x)
100 0.25000 x 107° 0.25000 x 107°
175 0.22323 x 1074 0.13398 x 107 %
200 0.20000 x 104 0.20000 x 1074
250 0.95362 x 10°° 0.39062 x 104
300 0.67500 x 1074 0.67500 x 1074
400 0.51000 x 1073 0.51000 x 10°°
875 . 0.86323 x 10 ° 0.85402 x 1072
500 0.99609 x 107° 0.99609 x 10°°
590 0.16357 x 1072 0.16666 x 1672
600 0.17212 x 1072 0.17212 x 10”2
700 0.27332 x 102 0.27332 x 1072
800 0.40800 x 102 0.40800 x 1072
850 0.48880 x 1072 0.48938 x 1072
900 0.58092 x 102 0.58092 x 1072
950 0.68540 x 1072 0.68322 x 1072
L -2

1000 0.79687 x 10 0.79687 x 10




