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Abstract.

Mathematical analysis involved in the computations of solar
zenith angle and solar declination is presented in this study.These
angles ane used ind almost every solar radiation telated
study.Certain inferences are drawn on the basis of these
computations regarding the variability of solar zenith angle, solar
declination, sun rise time, sun set time, duration of sun shine,
latitude of polar night, hour angle, heliocentric distance and total
solar radiation recieved at the top of the atmosphere. Variation of
heliocentric distance 1is identified to be responsible for the
asymmetry in the latitudinal-julian day distribution of total daily
solar radiation at the top of the atmosphere.

Key Words : Heliocentric, Solar Declination, Zenith Angle,
Eccentricity, Orbit, Radiation, Solar, Julian Day,

Solastice, Egquinox.

1. Introduction.

In almost all solar radiation related studies,one (guite
frequently comes across certain mathematical relations involving
some solar angles related to the motion of the earth around the
sun.It 1is found that in most of the works generally a reference is
made to these formulas whiech are quite significant.An attempt is
made to give a detailed mathematical analysis invelved in the
derivation of these relations and relevent implications are drawn
from this analysis at the appropriate stages in this text.We feel
that this sort of analysis 1is sometimes helpful in better
understanding of certain basic features involved in solar radiative
studies. In this study we have considered 1local time in all

computations.



2. Solar Zenith Angle.

Solar zenith angle is normally computed from other angles that
are known.In Fig.1 let P be the point of observation and 0Z the
zenitﬁ through this point.Assume that the sun is in the direction 0S
and let D be the point of earth's surface directly under the
sun.Plane of 0Z and 0S8 will intersect the surface of the earth in a
great cirecle.PD being the arc of this great cirecle is a geodesic.The
angle Z0S,measured by the geodesiec PD, is equal to sun's zenith
distance E}o.ln the spherieal triangfe NPD, are ND is equal to 90°
minus the solar declination , §, which is the angular distance of
the sun north (positive) or south (negative) of the equator.Arc NP
is equal to 90° minus the latitude , A » of the point of
observation.Angle ,h, is the hour angle i.e. angle through which the
earth most (turn) rotate to bring the meridian of the point of
observation ,P, directly under the meridian of the sun.The solar
declination , S‘,is a Ffunction of the day of the year only and 1is
independent of the location of the point of observation.It ,g,
varies from +23O 27' on 21St June to -23° 27T on 22nd December and
is zero on equingxes i.e. 213t March and 231’.d September. Hour angle
,h, is a function of the time of the day and is zero at solar noon
and increases (decreases) by 15° for every hour before (after) solar
noon.Fig.2 is magnified version of the spherical geometry of Fig.1.
In Fig.2 NA is tangent to the arc NP and NB is tangent to the arc

ND.Fig.2 shows various angles of Fig.l1. From Fig.2 we get

NA = NO tan(@"') 2215
NB = NO tan(f ) ¢2.1..8)
0OA = NO Sec(D") (2. 048)
0B = NO Sec(( ) (2:1.9)

From triangle NAB we get :-

(AB)2 = (AN)2 + (NE)2 - 2 AN.NB Cos(h) (2.2)



From triangle OAB we get :-

(88)% = (0a)% + (0B)Z - 2 o4.0B Cos( B ) (2.3)

From Egs.(2.2),(2.3) we get :-

(AN)? + (NB)® - 2 AN.NB Cos(h) = (0a)2 « (08)% - 2 0A.0B Cos( @)
(2.4)

Subsituting Eq.(2.1) i‘n Eq.(2.4) we get :-

(N0)? [tan?(O') + tan?(©) - 2 tan( @' )tan(® )Cos(h)] =
(NO)2 [Secz(e'} + Sec2(5) = Sec(@")Sec(e-)Cos(ao)]

From this equation we get the following relation.

2 + 2 tan(6 )tan( @ ')Cos(h) = 2 Sec(O )Sec(@ ')Cos( B )

This equation on simplification yields the following expression.
Cos(B ) = Cos(B)cCos(B ') + 5in(H ')sin( B )Cos(h) (2.5)

From Fig.2 we find that
0 =T -§ (2.6.4)

g = Mz - A (2.6.B)

On  using Egs.(2.6.8).(2.6.B) in Eg.(2.5) -we finally . get the

following relation.

Cos(O ) = Sin(A )8in(§ ) + Cos(A JCos(§ )Cos(h) (2.7)
This equation gives solar zenith ,60, in terms of the angles g,?\
and h which are known.As Cos(-h) = Cos(h) ,so solar zenith angle at

a particular latitude on any day of the year is symmetric with



respect to the noon. From Eq.(2.7) we find the solar zenith angle at
any latitude at solar noon ,i.e. Cos(h) = 1 , as [A - 8}.Now, as at
the time of sunrise or sunset at any latitude (except poles)
Cos(O ) = 0 and h = H = half-day duration , so we get h = H = half-

day duration from the following relation.

Cos(H) = - tan(A )tan(§8 ) (2.8)
The half-day duration will be six hours if either tan(A ) = 0 i.e.
equator on all days or'tan(s ) = 0 i.e. equinoxes at all latjitudes
except the poles.The latitude of polar night is obtained by
substituting H = 0 in the Eq.(2.8) and is given by the following

relation

Lat = 90° - |§ | (2.9)

3. Solar Declination.

The term ANOMALY is very frequently used in the computation of the
solar declination. It is defined as "The angular distance describing
the position of an orbiting body such as a planet".Anomaly is of
three types viz. true anomaly , mean anomaly and eccentric
anomaly.The apparent orbital motion of the sun about the earth is
shown by the ellipse ADBFA in Fig.3 with earth located at the focus
S.The circle AD'BGA represents the orbit of a fictitious sun which
revolves with constant speed and a one year period.Let the sun and
the fictitious sun be at perigee A at time to and at positions P and
S' after some time t, respectively.Let "a" be the semi major axis ,
"b" the semi minor axis, € the eccentricity of the elliptical orbit
and T the orbital period.Let the radius vector SP make an angle v
with SA. Angle PSA , i.e. v, is called true anomaly.Distance SP i.e.
the distance of the planet from the sun is called heliocentric
distance. Let PR ,the perpendicular from P on CA, meet the circular
orbit at Q.Angle QCA , i.e. E , is called eccentric anomaly.Let H be
the point , in the plane of the ellipse, of intersection of the
equator and the ecliptic i.e. where sun ascends north of the equator
and it occurs at vernal eguinox.Angle PSH i.e. 69 , is the ecliptic
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longitude of the sun.Let &) be the value of 9

when the sun 1is at

perigee.Angles v,@and @ are related by the following relation.

v=0 -0
From a property of an ellipse we get :-
PR ORI =Sk e
From Fig.3 we get

PR r San v

I

and QR a Sin(E)

Subsitution of Egs.(3.3),(3.4) in Eqg.(3.2) gives
r Sin(v) : a Sin(E) = b : 4
6. r Sin(v) = b Sin(E)
From Fig.3 we further find that

SR r Cos(v) = CR - €3 = a Cos(E) - €S

a Cos(E) - ae = a [Cos(E) - e]

i.e. r Coslv) =a [Cos(E) = &]

From Egs.(3.5) and (3.6) we get

2

R Sinz(E) + a2 [Cos(E) - e ]2

(31

(3.2)

(33

(3.4)

£3.5)

(3.6)

On using the relation b2 = a2(1 - 32) in the above equation we get

7 = a L= o Cos il

(3.7



From the trignometry we have the following relation
2r Sinz(v/E) = r[1 = Cos(v)]
On using Eq.(3.6) and (3.7) the above relation becomes.
2r Sin®(v/2) = a(1 + e)[1 - Cos(E)] (3.8)
.Similarly we get 7
2r Cos2(v/2) = a(1 = e)[1 + Cos(E)] (3.9)
From Eqn.(3.8) and (3.9) we get

tan(v/2) = (1 + )2 (1 = &)~"V2 san(ry2) (3.10)

We now introduce an angle ,#), lying between 0 and N/2 and defined

as under.
Sin(4>) - e (3.10.4)
On substituting Eq.(3.10.4) in Eg.(3.10) we get

tan(v/2) = [1 + tan((#/2)] filit= tan(CP/2)]_1 tan(E/2) (3. 11)

From the following identities

2 Cosfd) = eiA + e'iA
gnd 2% Siolk) =@t u et
we get the following
tan(v/2) = 1(e*¥ = 1)40el¥ + 1) (3a11.4]
tan(E/2) = i(e ® - 1)/(eiB + 1 T

=F=



Using the following transformation
x = tan( $/2) (3.12)

and Eq.(3.11.8) and (3.11.B) ,Eq.(3.11) gives

el¥ _ 1B e = xe"iE] [ xej‘E]'1 et

On using the following logarithmic series expension

L)

Log(Z) = % = 2°/2 + 73

3=
we get the following expression

v = Bl e 20w SinlET & 2572 Sinl28) « %373 Sial38) = 1os J (3.14)

Now from the transformation x = tan(C?/E) we get
% =01 = Cosl@yl &' = 11 - 11 - a8 1t (3.14.4)

On using the following series expansion

M

(1 w8 = 1 o 207 = 5218 4 %3716 /158 = ...

we get the following expressions for x, x2 and x3.

X = e/2 + e3/8 + e5/16 +
x2 = eefh + eu/18 + 596/6M h e8/61ﬂ ey
x3 = 83/8 i 385/32 +

Subsitution of these series expansions of different powers of x in

Eq.(3.14) we get



v = B wbe e ool b a2 b e T SARIE)
+(eg/2 E e“/S - 566/64 ) i g 2 5|

4 0612 4 82416 & v )BEnlIES

i)

This equation gives, true anomaly ,v, in terms of the eccentric
anomaly ,E.For getting an expression of solar declination‘we need a
relation connecting true anomaly and mean anomaly.This can be
achieved by ,now, finding a relation between the eccentric anomaly

and the mean anomaly.For getting such an expression we refer to the

spherical geometry of Fig.3.

Kepler's second law of planetary motion states that "the aerial

velocity is constant".
Sy Area SPA :Area of ellipse = t - to : T (3.16)
and area of an ellipse is (1 ab)
Area SPA =TWab(t - t_)/T (3.17)
On introducing mean angular motion n = 2T‘/T we further get

Area SPA = nab(t - to)/2 G35 18)

We define mean anomaly "M" as

=
I

n(t - t,) (3.19)

T (t - t,)/T (3.20)

fu

®
=
]

Substituting Eq.(3.20) in Eq.(3.17) we get

Area SPA = Mab/2 (3.21)

B



Now the area SPA is expressed in terms of the eccentric anomaly,E,

in the following way.

Area SPR + Area PRA

Area SPA
= 1/2 SR.PR + Area PRA
= 1/2 [CR = CSJPR s+ Area PRA
= 1/2 [a Cos(E) - CS].PR + Area PRA
= a/2 [Cos(E) - e].PR + Area PRA
= ab/2 [Cos(E) - e]Sin(E) + Area PRA (3.22)

For computing area of the figure PRA we consider a small strip
perpendicular to AB. Area PRA is thus considered as a sum total of
areas of all such small strips.Let the strip VU meet the circle at

W.

VU : WU = b : a (3.23)
inen VU = (b/a)WU

As sum of all such strips 1is equal to the area PRA , area thus
becomes equal to (b/a) times the area of sector QRA. We thus get

Area PRA (b/a) Area of sector QRA G323

Area of sector CQA - area of triangle CQR
(3:23,B)

Area of sector QRA

Since angle QCA is E, so the area of the sector CQA is azE/2. So

Area of triangle CQR = 1/2 CR.QR

ab/2 [E - Sin(E)Cos(E) ] (85230

i



On using Egs.(3.23.4),(3.23.B),(3.23.C), the Eg.(3.22) now reduces

to the following form.

Area SPA = ab/2 [E - e Sin(E)] (3.24)

From Egs.(3.21) and (3.24) we get
M =E - e Sin(E) (3257

.

This equation is called "Kepler's Equation". It is a relation

between eccentric anomaly ,E, and mean anomaly M.From Eq.(3.25) we

also get
E =M+ e Sin(E) (3.26)

Using Eq.(3:26) in Eq.(3.15) we get true anomaly ,v, in terms of the

mean anomaly as under.
E=M+ e Sin(E) from Eq.(3.26)
As e is very small so to a first or&er aproximation
E = E (3.26.4)
Second order approximation of E i.e. a more accurate value is E2 and

E, =M+ e Sin(E1}

5 =
E3 =M+ e Sin(Ez)
1. E3 =M+ e Sin [M + € Sin(E1)]

=M+ e Sin(M) + 62/2 Sin(2M)

=
Bpr
1
=
+
1]

Sin(EE)

=M+ Sin [M + e Sin(M) + e°/2 Sin(2M)]

=i



E=E, =M+ (e- e>/8) Sin(M)
+ €2/2 Sin(2M)
+ 3¢3/8 sin(3M) (3.27)
i.e. Sin(E) = Sin [M + (e - e3/8)Sin(M)
+ e2/2 sin(2M)

+ 2e3/8 Sin(3M)] (3.27.4)

For simplicity in mathematical analysis we retain terms upto the
order of e2 only.Under this resriction Eq.(3.2T7.8&) reduces to the

following form.
Sin(E) = Sin [M + e Sin(M) + e2/2 Sin(2M)] (3.27.B)
Using the following series expansions of functions Sin(A) and Cos(A)

Sin(A) = & - A3/3! + A°/5! -

4

Comlik) = T ~ A1 + A TANS =

in Eq.(3.27.B) we further get
Sin(E) = (1 - e2/8) Sin(M) + e/2 Sin(2M) + 3e°/8 Sin(3M) (3.28)

Sin(2E) Sin(2M) + e [Sin(3M) - Sin(M)] (3.29)

1

Sin(3E) Sin(3M) £3.3€)

Substituting Egs.(3.28),(3.29),(3.30) in Eg.(3.16) we get

i



vo=oM e (2= e3/H) Sin(M)
2 :
+ S5e /U Sin(2M)
+ 13e3/12 sin(3M) + ... (3.31)

This formula is called "Equation of the Centre".Its importance lies

in the fact that it relates true anomaly ,v, with the mean anomaly
,M, and the eccentricity ,e,, of the elliptical orbit.Following

Katayama (1974) , letting € denote the inclination of the earth's
orbit, solar declination , 5, is given by the following relation.

S(t) = sin~'[Sin( &)Sin(v +63)] (3.32)

where true anomaly v is computed using Eg.(3.31) and oo , the

ecliptie longitude of the sun at perigee, is =1.3550737 radians
( -77.64%).Solar declination is positive for 0 < (v +&®)<Tl and

negative for N < (v +60) < 2N .Solar declination is a function of
the day of the year.The numerical value of the eccentricity ,e, of

the earth's elliptical orbit is 0.01672.

The Solar zenith angle and solar declination thus computed are used
in the computations relating to solar radiation. Following Sellers
(1965) solar radiation incident at the top of the atmosphere Qg0 is
computed as

= 2
= S [rp/rp(t)] Cos(Bo) (3.33)

s

where S 1is solar constant (langley minute-1), rE(t) is the
heliocentric distance at time "t" and FE is the mean heliocentric
distance.Substitution of Eq.(2.7) in Eq.(3.33) gives the following.
ool S [_ 2 o . s g J_I
= re/rp(t)1° [Sin(A)8in(d ) + Cos(A )Cos(o )Cos(h)] (3.34)

s

The daily total solar radiation ,QS, incident on a horizontal
surface at the top of the atmosphere is cobtained by integerating

Eq.(3.34) from sun rise to sun set as

e




D
1]
€O
o,
Ll
1

(g /n-)dh (3.35)
—H -H

As dh/dt = £l. = the angular velocity of the earth = 2Tl radians per
day.Integeration of the above eguation finally gives the following

expression.

-

Q = (14bo/1) s [?‘E/rE(t)]2 [H Sin(9 )Sin( 6 )

+ Cos(9 )Cos( & )Sin(H)] (3.36)

where solar constant is in langley minute_1 and OS is in units of
langley day-T.Following Katayama (1974) we get the ratio [FE/PE(t)]

as a series of mean anomaly ,M, as
[Pp/rg(t)] = (1 + %) - (e - 3¢3/8) Cos(M)
- (€272 - e/3) cos(am)
- (3e3/8 - 135¢°/64) Cos(3M) - ... (3.37)
Eq.(3.37) is used while computing Qg from Eq.(3.36).
4. Results.

Daily 1latitudinal variations of sclar zenith angle are shown in
Figs.l4(a),(b),(e) at 12 hours, 9 hours and 6 hours ,respectively.
Fig.l4(a) shows that solar zenith angle is symmetrical with respect
to summer and winter solastices i.e. 21St June and 22nd December.
Similar symmetry of zenith angle is found from its distribution
given in Fig.4(b) at 9 hours.However, from Fig.4(c) it is found that
solar zenith angle is 900 at equator on all days of the year.It also
shows that zenith angle has (i) latitudinal symmetry with respect to

equator on all days of the year and (ii) daily symmetry about 21St

=135



June at all latitudes.

The daily latitudinal variations of the times of sun rise are
shown in Fig.5(a).In this figure area covered by the index "U"
denotes the points of the latitude - julian day cross section for
which the concept of daily sun rise is undefined.Fig.5.(a) shows sun
rise time as 6 hours at (i) equator on all days of the year and (ii)
both equinoxes ,i.e. vernal and autumnal, at all latitudes.It also
shows that time of sun rise is symmetrical about (i) equator on all
days of the year and (ii) at all latitudes on*both summer and winter
solastices 1i.e. 21St June and 22nd December.It also shows that the
time of sun rise increases (decreases) from north pole to south pole
during vernal to autumnal (autumnal to vernal) equinox. Fig.5(b)
shows daily latitudinal variations of the time of sun set.It gives
sun set time as 18 hours at (i) equator on all days of the year and
(ii) at all latitudes on both equinoxes. It alsoc shows that the time
of sun set is symmetrical about (i) equator throughout the year and
(ii) at all latitudes on both summer and winter solastices (215°
June and 22nd December). Area covered by index "U" is same as in
Fig.5(a). It also shows that the time of sun set decreases
(increases) from north pole to south pole during vernal to autumnal
(autumnal to vernal) equinox.The daily latitudinal variation of the
duration of sun shine is shown in Fig.5(c).It shows full day of 12
hour duration at (i) eguator on all days of the year and (ii) both
equinoxes at all latitudes.Duration of sun shine (full day) exhibits
same latitudinal and daily symmetry as times of sun rise and sun
set.It also shows that the duration of sun shine decreases
(increases) from north pole to south pole during during vernal to

autumnal (autumnal to vernal) equinox.

Profile of the diurnal variation of the hour angle (in degrees)
is shown in Fig.6.It is a linear variation at the rate of 15° /hour
with 0% at solar noon.Profile of the daily wvariation of solar
declination is shown in Fig.7.It is not a linear variation.It shows
symmetry with respect to ZTSt June.Its value is 0° on both
equinoxes.It wvaries from +230 2?!0n 21St June to -23O 27' on 22nd

December.

=l



Profile of the daily variation of the latitude of polar night is
shown in Fig.8.1t exhibits symmetry with respect to 3 8G June.It
shows polar nights are in polar 1latitudes on days around
equinoxes.Latitude of polar night is minimum on summer and winter
solastices i.e. 215% June & 229 December. Profile of the daily
variation of [;é/rE(t)]g is shown in Fig.9.It is seen from this
figure that this factor never exceeds unity by more than 3.5
percent.It wvaries from 1.0344 on 3pd January to 0.9671 on uth
july.This figure shows that this parameter is symmetric about* 4

Julys

Daily variation of total sclar radiation received at the top of
the atmosphere is shown in Fig.10.This distribution is seen to be
symmetric with respect to both summer and winter solastices. A
maxima is found in each (northern and southern) hemisphere. Value of
the southern hemispheric maxima is more than the value of northern
hemispheric maxima. Both hemispheric maxima are found to be located
equidistant from the equator. Locations of the two hemispheric
maxima are marked as "X" in Fig.10. Areas of Fig.10 marked as "N"
mean that these areas are covered by night. The distribution of Qs

is slightly asymmetric and this asymmetry may be attributed to term
[ Tg/rg(t)1? (say 'A') of Eq.3.36. From Fig.9 it is found that 'A’
increases from its minimum value (4°P July) to its maximum value
(31"d January) by 6.4% of the minimum value and variation of Q_ from
its northern hemispheric maxima to southern hemispheric maxima is
6.1% of the former. In these computations term 'A' is computed every
day whereas Qs is computed at the interval of seven days. Both these
quantities wviz. 'A' and Qs attain their maximum values during
Januwary. - Furthermore sun is located in the southern hemisphere
during the month of January as a result of which the southern
hemisphere gets more solar insolation.The closeness of these limits
of variations suggest that 'A' may be responsible for the asymmetry
in Qs.The date of perigee varies annually fron 2nd January to Eth
January. The mean date of perigee ,Katayama (1974), for the years
1950-1972 is 3.36 and accordingly the value of t, in Eq.(3.20) is
taken as 2.36 days. Results obtained in this analysis are found to

=5=



be consistent with List (1963).

Acknowledgements.

Author thanks Director,I.I.T.M., for providing facilities for
carrying out this work. Author thanks Dr.S.K.Mishra, Dr.3.Rajamani
and Dr. (Mrs.) P.S.Salvekar for reviewing this article and giving
valuable suggestions. Author alsoc thanks Drawing Section (IITM) for
preparing tracings of the figures..Utilisation of IITM's ND-560/Cx

computer facilty is thankfully ackcnowledged.

6=



References.

Katayama, A., 1974 : A simplified scheme for computing radiative
transfer ‘in the troposphere, Tech.Rep.No.6, Deptt.Met.UCLA,
T po.

List, Robert J., 1963 : Smithsonian Meteorological Tables, Pb. by
The Smithsonian Institution, pp 527.

)

Sellers, W.D., 1965 : Physical Climatology, The Univ. of Chicago
- Press;pp 272, '

i



LUCQ‘ zenith

Fig.1 Spherical geometry for computing solar zenith

angle.
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Fig,3 Spherical geometry for computing solar

declination.
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; SOLAR RADIATION AT THE TOP OF THE ATMOSPHERE
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Latitude - julian day cross section of the
variation of total solar radiation at the top
of the atmosphere in langleys per day. Locations
of hemispheric maxima are marked as "X".



