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ABSTRACT A brief review of deterministic chaocs and possible
applications to Meteorology and Atmospheric Physics is given in this
paper. References for further reading are given at the end of the
paper.

Introduction -

Deterministic chaos is the name given to the irregular behaviour
of simple deterministic systems and has emerged as an area of intensive
research 1in dynamics since the early 1980s. A dynamical system is
simply a system that changes its behaviour over time, two disparate
examples being the atmospheric weather ratterns and the stock market
price fluctuations. The dynamical system consists of rules describing
the way some quantity or a set of quantities undergoes a change. The
model 1s based on differential equations and their representations in
space. This geometrical and topological foundation for dynamics and the
study of moving things is attributed to the French mathematician Jules
Henri Poincare (1908). The beginnings of chaos theory originated with
Poincare’s study of a familiar (as yet unresolved) problem in dynamics,
the three body problem. A dynamical system is called deterministic if
given a set of initial conditions precisely, then the state of the
system can be determined precisely by the evolution equations at any
later time. Such equations are also termed linear equations. Students
of the physical sciences are taught mostly linear laws of dynamics

which envisage total predictability of the dynamical system starting



from a set of knowm initial conditions. When confronted with a
nonlinear problem the equations are immediately linearized by using o
approximation as a special case. Put in the real world many problemns
are inherently nonlinear with irregular chaotic behaviour and cannot be
.linearized meaningfully without losing the physics of the problem.
Chaos 1is a Greek word that has come to mean confiasion, disorder, a
complete lack of structure and organisation. Chaos theory or chaos
sclence is a branch of both mathematical and physical sciences.
Traditionally (unit 1970), the complexity in the _behaviour of
dynamical systems was attributed to indeterminism in the form of
external noise or complexity in the structure of the deterministic
system. Recently, mathematical studies indicate  that simple
deterministic systems can exist which are intrinsically capable of
manifesting extremely complicated behaviour. Further, there is evidence
for the existence of patterns of order deeply embedded in the field of
chaos. Chaos 1is not random since it is shown to obey strict
mathematical rules that derive from equations that can be written down
and studied. These ongoing discoveries would have profound implications
for every branch of science as well as for economics and other areas of
human interest. This is becaunse random chance governs almost all events
in the universe. Chaos, conventionally associated with random chance
is now shown to follow deterministic laws and therefore stochastic

processes may also have an underlying order and therefore predictable.

2. Origin of Chaos in Dynamical Systems
The origin of complicated (irregular, unpredictable) behaviour
in a deterministic system mist atleast be related to the imprecision in

specifying the initial conditions. This, however is not sufficient for



unpredictable behaviour as there are many systems for which the small
initial errors remain small. As a result, apart from this imprer_;.ision
other ingredients are necessary for such a system te allow complicated
behaviour. To begin with, a mechanism is required to blow up initial
errors exponentially. This is called “sensitive dependence on jnitial
conditions”. This mechanism is yet to be identified. The important
unsolved problem in modern chaos dynamics is how +to characterize
mathematically (statistically) +the implicit order in the field of
chaos. Even though the temporal and spatial aspects of the evolution of
such systems are ultimately closely related, nevertheless comparatively
little is known about the latter. The spatial evolution of the field of
chaos may be important in the forecasting of the intensification of
weather systems. The final goal in.the study of chaos dynamics is to
formalate structurally stable mathematical models for dynamical
systems, i.e., models which do not change their guantitative behaviour
under small perturbations and which enable prediction of time averages

which are independent of initial conditions.

3. Universal route to chaos

Simple deterministic model systems (as well as real ones) can
have irregular (chaotic, turbulent) behaviour as well as regular
(laminar) types of motion. A problem that has recently attracted a
great deal of attention concerns the way in which this transition comes
about. In fact the history of the subject extends atleast as far back
as 1940s when the Soviet physicist Landau put forward together with his
scenarios for the onset of turbulence, the view that the knowledge of

the route to turbulence would be of value in understanding turbulence



itself. Until very recently the hope was that such routes would either
be unique or that their number would be finite and small.

Une of the more exciting recent developments in chaos theory has
been the idea of universality. One of the leaders of this development
has been physicist Mitchell Feigenbaum, formerly of Los Alamos and now
at Cornell University. Essentially universality states that natare
appears to have chosen a limited number of patterns of behaviour that
lead to chacs and that these patterns have not only qualitative aspects
in common but quantitative ones as well-that there is order in chaos.
One of these patterns in the transition to chaos is called periocd
doubling. It is the process by which the periodic behaviour of a
particular system alters and finally becomes erratic as a particular
parameter is changed. The behaviour undergoes a very  specific
alteration. In such systems the behaviour normally reproduces itself
after a given period or time interval, when the parameter is changed -
temperature, say in heating a flaid, or food supply in a population of
grazing animals - the period doubles. It now takes two of the original
time intervals for the behaviour to repeat. According to Felgenbaum,
this process of successive period doubling rzcurs continually until at
a certain value of the parameter it has doubled ad infinitum, so that
the behaviour is no longer periodic. Period doubling is then a
characteristic route for a system to follow as it changes from a simple
periodic to a complex aperiodic motion. In fact period doubling is seen
in the noise in electronic circuits, the size of a population of
whales, the transition to turbulence in a pot of water being heated and
in the dripping faucet. In 1975 FHeigenbaum began exploring the

properties of sowe simple nonlinear equations wusing a programmable



pocket calculator and the process called iteration. He found that the
ratio of the change in parameter values needed to switch from one period
doubling to the next is a constant and he called this constant
‘convergence rate”. He identified the two universal constants a=-2.5029
and d = 4.6692 now named Feigenbamn's constants. a and d are
independent of the details of the nonlinear equations for the period
doubling sequence. Delbourgo, a physicist of the University of Tasmania
extended the above studies in 1986 and identified the universal
relation 3d=2a® for a wide domain of period triplings, quadruplings etc.
A great deal of work has been done in order to understand the origin of
this “universality  which has been observed in many real systems. It is
however, not been possible to identify a single universal route to
chaos since experiments (both numerical and real) show that even within
one system many different routes to chaos can exist for different
ranges of the parameters. As a result, the understanding of the route
to chaos does not necessarily lead to the understanding of chaotic
regime itself.
4. Atmospheric flows

Describing turbulent fluid flows e.g., atmospheric flows and
predicting their guantitative behaviour realistically has not been
possible even after a century of research in turbulence. The reasons
for the difficulty lie partly in the mathematics of turbulence theory.
The equations of fluid flows are derived directly from Newton s laws of
motion. They are called Navier-Stokes equations. The Navier-Stokes
equations neatly express in mathematical language the fundamental laws
that govern fluid flow. These equations however do not have aexact

analytic solutions and in the averaged forms normally applied are



insufficient to determine a solution. In order to simulate the
atmospheric convective activity wlﬁph is basically a problem of
transport of heat by a gas, researchers must account for the
conservation of mass and momentum (Navier-Stokes equations), the
conservation of energy (first law of thermodynamics) and the
relationship between density, temperature and preassure (Boyle's law).
For computer models or numerical simulations these equations must be
converted to a form in which they can be applied only at a relatively
small set of grid points. Variables defined at each grid point make up
a numerical model that is coded into computer lansuage and put into the
machine. The number of variables involved in modelling turbulent flow
is so staggering that they cannot be adequately handled with advanced
computers. Even at the swift rate of development of computers they will

not be able to resolve fully developed turbulence.

5. The geometry of turbulent trajectories in fluid flows

In trying to represent the extraordinary complexities that ariss
in the behaviour of a turbulent fluid, physicists invoke an abstraction
called phase space. Phase space is a multidimensional space in which
differential equations form patterns generated by a point that
continuously traces a trajectory. The location of the point at any time
contains all - the-information needed to describe its state. Poincare
(1908) had originally used this geomstrical approach to analyze the
motions of three body systems (earth, sun and moon). One point in phase
space represents a single measurement of the state of the fluid as it
evolves in time. When the collection of points that represent all the

measurements 13 connected, a trajectory is produced that lies on the



surface of an object (another abstraction) sitting somewhere in phase
space. This object is usually a strange attractor-strange because of
its convoluted shape, attractor because it refers to the final
destination of the trajectories.

The chaotic (strange) attractor was actually knosm to  theorists
60 years ago, but it only emerged into the consciousness of sclence
between 1961 and 1971 because of the availability of computer graphical
display facilities for doing mathematics. The results can be seen
graphically and intarpr?ted immediately. This enabled solution of a
much richer variety of problems than possible in the nineteenth century
using analytical technigues. The first strangé attractor (althoush he
did not use the term) in a real world physical system was found by
Edward Lorenz at the Massachusetts Institute of Technclogy in 1863.
Lorenz had been a mathematician before World War II, a student of the
great George Birkhoff (1884-1944). Birkhoff continued what Poincare had
begun, the geometrical study of dynamical systems. By 1932 Birkhoff had
developed the theoretical basis of what would now be called chaos.
Lorenz started with Navier-Stokes equations of the entire planet’s
atmosphere in order to understand weather patterns. He arrived at a
simple looking system of three ordinary differential equations which
however did not have analvtical solutions. He then calculated using a
computer, the time evolution of the air flow trajectories. He found
that the trajectory went round and round in a geometrical figure that
was vaguely two dimensional. On that surface it behaved very
erratically. Lorenz's model for atmospheric turbulence  therefore
predicts inherent uncertainity of long range weather forecasts.

Lorenz's model of the onset of chaos is described in a c¢lassical



paper "Deterministic Nonperiocdic Flow™ published in 1963 in the Jourmal
of Atmospl;leric Sciences of the American Meteorological Society. The
shape of the Lorenz s strange attractor, a sort of undulating torus
with two holes 1s now called Lorenz's butterfly or Lorenz's mask
depending on which of the two objects the wviewer thinks it most
resembles. The phrase, strange attractor, was first published in a
paper in 1971 by David Ruelle, a mathematical physicist at the
Institute of Advanced Scientific Studies in France and Floris Takgns, a
mathematician at the State University of Groningen in the Netherlands.
Until very recently all the work don; on turbulence had been highly
mathematical and theoretical, since guantitative  technique  for
characterising a dynamical system in phase space were not known. Now,
however, experimental physicists have begun to get involved after
quantitative technigue became available in 1983 enabling scientists,
using more accurate data from experiments, to construct attractors as

the dynamical systems evolved in time.

6. Self similar fractal geometry of strange attractors

The strange attractor desisn for dynamical systems in chaos is
found to have fractal geometrical shape. The word fractal indicates
broken or fractured geometrical structure and was first coined by
mathematician Benoit Mandelbrot of Harvard University and IBM's Thomas
J. Watson Research Centre who vigorously promulgated the use of
fractals since the late 1950s. The fractal dimension of an object,
usually a noninteger or fractional value is a measure of the extent to
which it fills space on which it is embedded. The fractal dimension of
a cloud which is not an exact sphere is therefore less than 3. The ever

changing shape of the cloud is a typical strange attractor patterm of



Lhe Uhree dimensional lradectoriss of boaebudesil ale Plows loslde Lhe
cloud. The fractal geometrical shape of the strange attractor is also
self similar i.e., possesses identical internal structure throughout
its space time domain. Self similarity implies growth by replication of
a basic desimn e.g., the intricate bsautical patterns of “Rangoli”
which are considered auspicous in Indian tradition are formed by a
continous harmonious repetition of a single basic design. pelf
similarity dimplies scale invariance since the internal structure
remains the same for all spatial scales. Mandelbrot's studies showed.
that nature abounds in self similar fractal structures (coastlines,

trees, lightining, mountains etc.)

Deterministic chaos in atmospheric flows

Atmospheric flows consist of a complete spectrum of fluctuations
ranging from the turbulence scale of a few centimeters to the planetary
scales of thousands of kilometres. Traditional meteorological studies
were confined to the immediately perceived turbulence scale and the
synoptic scale (100-1000 km) because of the lack of a sufficiently
dense network of observatories. The advent of radar and then
satellites in the fifties and sixties gave access to meteorologists to
view the complete spectrum of weather phenomena comprising the
turbulence, convective, meso-, synoptic and planetary scales. Advances
in remote sensing and insitu measurement technique, have enabled to
record the following new cbservational results. Fluctuations occur over
a wide range of space and time scales, in particular, the energy
spectrum of wind in the horizontal is of the scaling (power law) form

£ where - ¥ is the freguency and B is a exponent of value -5/3 for
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horizontal spectrum. Such scale invariant atmospheric fluctuations are
also consistent with the observed universal fractal geometry to the
global cloud cover pattern. Shaun Lovejoy é physicist now at the
University of DMeGill, Canada established in 1982 conclusively the
applicability of fractals in meteorclogy by showing that cloud and rain
areas project on the Earth along shapes whose boundaries are fractal
curves with fractal dimension 1.35 for sizes ranging from 0.16 lkm to
- 1000 km. This finding expressed mathematically the intuitive view of
cloud and rain shapes as composed of billows upon billows since fracfal
geometry implies structure with a hierarchy of identical shapes,
Furthermore, in the last 10 years, many experiments, particularly in
the wvelocity field show that atmospheric circulations are scale
invariant from the turbulence scale to the planetary = scale.
Deterministic chaos  therefore underlies meteorological and
climatological fluctuations in atmospheric flows and probably
determines weather patterns from meteorclogical to climatological

scales.

8. Deterministic chaos, meteoroleogy and atmospheric physics
Atmospheric weather systems are coherent structures consisting
of discrete cloud cells, forming patm of rows/streets, mesoscale
(up to 100 km) cloud clusters (MCC) and spiral bands which maintain
their identity for the duration of their appreciable life time in the
turbulent shear flows (wind speed varying with height) of the earth’s
atmosphere. The existence of coherent structures (seemingly systematic
motion) in turbulent flows has been well established during the last 20
yvears of research in turbulence. It is still, however, debated whether

these structures are the consequence of some kind of instabilities or
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whether they are manifestation of some instrinsic universal properties
of any twrbulent flow. Experimental data and theoretical studies
indicate that the steady state atmospheric boundary layver may consist
of a hierarchy of intrinsically helical fluctuaticns (vortices). The
coherent helical geometry of weathey systgm 1is, indicated by the
following observations. (1) All basic atmospheric flow structures
appear to be distinctly helical. These include such outstanding
examples of organised geopbysic_al motion as medium scale tornado
generating squall lines, hurricanes etc. (2) Geophysical flow3 give an
implicit indication of upscale transfer of a certain amount of energy
inserted at much smaller scale (3) The helical nature of the most
violent geophysical phenomena - a supercell storm - is shown beyond any
doubt. Further, observations show that energy injected at some scale is
not dissipated but on the contrary is tranamitted to larger and larger
scales 1.e., inverse energy cascade occurs. At present the concept of
inverse cascade is well accepted and probably plays an important role
in geophysical flows. These observational results indicate that the
geometrical pattern of deterministic chaos in atmospheric  flows
consists of a hierarchical system of vortices i.e., swirls within
swirls existing as a unified whole.

Deterministic chaos and weather prediction

Numerical weather prediction models, in particular long range
prediction models do not give realistic forecasts because of the
following inherent limitations. (1) The nonlinear governing equations
for atmospheric flows do not have exact analytic solutions and being
sensitive to initial conditions give chaotic solutions characteristic

of deterministic chaos. (2) The governing equations do not incorporate
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the dynamical interactions and co-existence of the complete spectrum of
wirbulent fluctuations which form an integral part of the large
coherent weather systems (3) Limitations of available computer capacity
necessitates severe truncation of the governing equations, thereby
generating errors of approximations. (4) The computer precision related
roundoff errors magnify the earlier mentioned uncertainties
exponentially with time and the model predictions become unrealistic.
The accurate modelling of weather phenomena therefore requires
alternative concepts and computational techniques. The newly emerging
field of deterministic chaos may  hopefully provide suitable
mathematical and statistical techniques for more accurate long range

weather prediction.
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