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ABSTRACT

Fluctuations in meteorological parameters occur on all time scales ranging from
the instrumentation time resolution limit to the total duration for which data is
available. Recent studies have identified the self-similar fractal structure of such
fluctuations. Self-similarity implies long-range correlations. It is well known that
variance of timme series data increases with increase in time resolution. Traditional
statistical methods do not provide a general approach Lo describing variances of
such fractal time series. It is therefore important to quantify this resolution
dependent variance for parameterization of boundary layer proceses for
predictability studics of different time scales in numerical weather prediction
(NWP) models. In this paper it is shown that this resolution dependent variance is
described by the fractal dimension D. The relative dispersion RD
(RD=standard deviation/mean) of the temporal distribution for a given time
resolution t is given by

RD(t) = RD(t, )Li-}

0

where ty is the available data resolution. The fractal dimension D is related to the
conventional correlation coefficient r between adjacent values in the time series
as r = 2% _ 1 A fractal dimension less than, equal to or greater than /.5
indicates respectively, a positive, zero, and negative corrclation between adjacent
values. A fractal dimension /.5 corresponds to zero correlation, i.e., random
fluctuations and RD(1)=RD(t,)/ Y(1/ty) in agreement with conventional statistics.

In this paper, the fractal structure of temporal fluctuations of temperature time
series is illustrated and the increase in variance with increase in time resolution is
quantified in terms of the fractal dimension D.

Key words : Temporal fractals, fractal time series, fractal dimension,
correlation coelTicient.,
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Introduction

Fluctuations in atmospheric flows as recorded in pressure, temperature and other
metcorological parmeters occur on all space (time) scales from the turbulence
scale of a few millimetres (seconds) to hundreds of kilometres (years). It is
important to quantify the space-time pattern of fluctuations for predictability
studies. Lovejoy and Scherizer (1986) have documented the self-similar fractal
geometry ol the space-time [Tuctuations in atmospheric lows as nuilested in the
fractal geometry of cloud shapes and the inverse power law [orm for power
spectra of temporal fluctuations of meteorological parmeters. The fractal shape of
cloud over the Indian region has been identified (Jain, 1989; Jayanthi et al.,
1990). Real world dynamical systems, i.e., systems which evolve with time exhibit
self-similar fluctuations in space and time and are recently identified as signatures
of self-organized criticality (Bak et al., 1988). Self-organized criticality in the
temporal (years) evolution of rainfall pattern over the Indian region has been
identified (Mary Selvam et al.,, 1992; Mary Selvam, 1993). In this paper it is
shown that the fractal nature of meteorological time series enables quantification
of the relation between variances at different time resolutions, i.e., the variability
at shorter time resolutions may be inferred [rom more convenient measurements
at larger time-averaged measurcments, Standard statistical procedures (Snedecor
and Cochran, 1980; King ct al.,1990) do not provide for quantifying the obscrved
increase in variance associated with higher resolution (space-Lime) mecasurements
of the fractal (self-similar) time series with long-range spatiotemporal
correlations. The fractal description of the relationship between variances of the
time-averaged variable at difTerent time-resolutions will help identify suitable
time-interval for predictability studies.

2. Data and Analysis Techniques

One-minute resolution MONTBLEX temperature data (Rudrakumar et al,
1991a; Rudrakumar et al.,1991b; Rudrakumar and Prabhu, 1991) at 1,2,4,8,15
and 30 m levels at the three stations, Delhi, Varanasi and Jodhpur were used for
the study. The locations/heights of the stations, the period of study, the number
of minutes of continuous data and the mean temperature at available levels are
given in Table 1.The data were obtained from the Computer and Data Division of
the Indian Institute of Tropical Metecorology,Pune - 411 008, India.

The self-similar (fractal) fluctuations in time for a representative sample time
series is shown in Figure 1. The risc and fall of diurnal solar heating related
temperature fluctuation seen in the long-period record at the upper right-hand
corner of Figure 1 is repeated (self-similar) on a smaller (time-magnitude) scale
throughout the record duration as seen in the magnified short period record in the
center of Figure 1.

In statistics, the relative dispersion RD analysis compares the variance of a
variable as the measurement resolution increases. The coeflicient of variation,
namely RD, is an index of variability or heterogeneity within the domain.



RD equals the standard deviation divided by the mean. In general, the observed
degree of heterogeneity increases as resolution of the method increases. When
these increases are proportional, the relation can be fractal or at least describable
by a fractal relation, ilit holds true over a sizable range of observation unit sizes.
Given that a fractal relation exists between the observed RD of temperature and
t, the averaging time interval in minutes, the relation can be expressed by the
cquation (King ct al., 1990).

RD(() = Rn(ta{i] (1)

t,

where tg is the highest available time resolution ( 1 minute in the present study).
The reason for calling this a fractal relationship rather than just a power law
relationship is that the possible slopes of the relationship are bounded by limits,
and the fractal dimension D, gives insight into the nature ol the data. These
equations, describing the relation between a measured quantity and the temporal
resolution of measurement, are also found in mathematical constructs and natural
phenomena having fractal geometry (Mandelbrot, 1983; Peitgen and Richter,
1986; Peitgen and Saupe, 1988).

Traditional statistical methods deal with perfectly random variations where any
one set of observations at a particular size of observed unit serves to characterise
it completely such that

RD(t,)

RD(t) = TR - (2)

A general approach to describing variances, in particular for the ubiquitous
self=similar (correlated) time series is not provided in conventional statistics.
There is no law that says that log RD versus log n for the number nof
aggregates of non-random variables should show self-similarity. However, the
grouping of neighbours must give a monotonically decreasing RD, since
averaging smoothes out extreme fluctuations.

The fractal dimension D gives a measure of the temporal correlation r between
defined time intervals. Van Beek et al. (1989) have derived the general expression

r=2"".1

for precise description of heterogeneity of regional and myocardial blood flows
over a wide range of domain sizes. Details of derivation of the above equation arc
given in the following,

Experimental time scrics data show that a sample interval with high values for
the time series variable (temperature in the present study) tends to have a
neighbour that also has a relatively high temperature, and low temperature
intervals tend (o have low temperature neighbours.Persistence or corrclation



between neighbouring, events in time oceur on all time scales [rom seconds (o
years. The fluctuations in time are therefore self-similar or fractals in time and
can be described by the fractal law in Eq. (1), namely,

-1

t
RD(t)=RD(t, ) —
(0= RD( ) |
when two adjacent time intervals are taken together (Y+Y3), the expectation (E)
for the combined temperature is
E(Yi+Y2)=2np
where p is the average temperature for unit time interval. Mendenhall and
Scheaffer (1973) show the expected variance of Y + Y3 to be
Var(Y;+ Y3) = Var (Y;) + Var (Yz) + 2Cov (Y, ,Y3)
where Cov is the covariance. Because it is assumed that

Var (V) = Var (Y3) = Var (Y)

we find

2% [[var(Y) + Cov(Y,, Y,
RD(Y, +V,) = [ var ): i) S

But it has been empirically found (Eq. 1) that
RD(Y;+Y;) =RD (Y).2"" (4)

where, by definition

RD(Y)=

JVar(Y) 5)
71

Therefore from Eqs. (3) to (5)

JVar(Y) ., 2 »¢ J[Var(Y) + Cov(Y, +Y,)|
" n

or

Cov(Yl,YI)“ e ‘
Var(Y) e ©)

Since the traditional correlation cocflicient r is given as



e Cov(X,+,%,) ! Cov(Y,,Y,)
\/[ Var(Y,)Var(Y, )] Var(Y)

We have from Eq. 6
R Al | (7)

The above equation is an important derivation since it summarises the properties
of the data set. If there is no temporal correlation, r=0, so that when the
temperature fluctuations are completely random the fractal dimension D=1.5
and Eq. (1) reduces to Eq. (2) consistent with traditional statistics. This gives a
maximal slope in the plots of RD versus the time interval for averaging.. At the
opposite extreme, with perfect correlation, r=/, temperature fluctuations are
uniform and the fractal dimension is 1.0. Regions of averaging time intervals for
which D is a constant have averaging-time independent correlation coefficient
between neighbours.

Eq. (1) and (7) can be applied to all temporal or spatial fractals. If a fractal
relationship is a reasonably good approximation, even over a decade or so, then it
will prove usclul in considerations of temporal functions and might be useful in
initiating research for the underlying basis for correlation.

In the present study, the relative dispersion RD was computed lor groups of
consccutive m values, n ranging from / at the highest resolution (/ minute) to
n=7710 where 7'is the total duration in minutes of temperature record. For each
n, say /0, the RD was calculated as the mean of /0 sets, starting successively
from first, second, third, tenth data value so that all possible combinations of
consecutive /0 values arc averaged. The standard deviation of the mean RD was
also computed. The mean RD, its standard deviation for averaging time intervals
ranging from / to 600 minutes are shown in Figures 2-4 respectively for the three
stations Delhi, Varanasi and Jodhpur for all available levels.

The exponent 1-D was computed from Eq. (1) and was plotted in Figure 5 for all
levels at the three stations.

3. Discussion and Conclusion

The important results of the present study arc as follows.

(1) RD remains constant for averaging time intervals up to /00 minutes and
thereafter decreases progressively with increase in averaging-time interval at the
three stations at all available levels ( Figures 2-4 ).

(2) RD decreases in general with increase in height of observation concomitant
with decrease in mean temperature. RD increases with height when there is an
inversion, i.e., increase in temperature with height (Table | and Figs. 2-4).



(3) The variation of the exponent 1-D in Eq. | and thercfore the fractal
dimension D with averaging time interval (Fig. 5) is identical for all levels at each
station.

(4) The fractal dimension D is equal to /, for averaging time intervals up to 100-
minutes indicating averaging-time interval independent one-to-one corrclation of
fluctuations between neighbours. D gradually increases for averaging-time
intervals greater than /00 minutes and becomes equal to 1.5 al averaging-time
intervals equal to about 400 minutes. Therefore, the positive correlation of
fluctuations between neighbours gradually decreases with increasing averaging-
time interval and becomes zero at averaging-time intervals of about 400 minutes.

The above study gives a quantitative measure for averaging-time interval related

variability of fractal time series. The results of analysis show that temperature
time series have multifractal structure, i.e., the fractal dimension D is different
for different ranges of averaging-time intervals. /'ractal analysis of temperature
time series at all levels for Delhi, Varanasi and Jodhpur show that /00-minute
averaging- time is representative of fluctuations of higher resolution up to /
minute, Easy-to-maintain lower resolution data acquisition systems may thercfore
suflice for providing data input for modelling boundary layer flows.
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