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Computation of thermal properties of surface soil from energy balance
equation using force-restore method

by

Subroto Sinha
(Indian Institute of Tropical Meteorology, Pashan, Pune 411008, India)

Abstract

In this study, the soil temperature data at different depths, recorded at regular intervals
during a 24 — hour period, is utilised to develop and test two methods of computing
various soil properties, such as, “thermal diffusivity”, “damping depth” and “thermal
conductivity”, which are then used to compute the soil heat flux and soil temperature
at the surface, applying the force-restore method. In the first method, only the diurnal
component of the surface temperature variation is assumed, whereas in the second
method, the other harmonic components of the surface temperature variations are also
considered. The surface temperatures computed by the second method are found to
be relatively in good agreement with those observed by a sensitive sensor at Anand
(Gujrat), during the pilot phase of the Land — Surface — Processes — Field -
Experiment.

1. Introduction

The force-restore method has been widely used to simulate the diurnal variations of
ground temperature, based on the heat budget of a slab of unspecified thickness,
which is heated from above by a single component periodic energy source and
supported from below by a substrata at constant temperature. This method is
particularly useful for computing the soil heat flux in the surface energy balance
equation. Normally, the computation of the soil heat flux requires the time-dependent
solution for soil temperatures within six or more layers of soil for reasonably good
accuracy. The force-restore method dispenses with the requirement of solving a
complex soil-temperature model in order to arrive at the equilibrium surface
temperature.

The data from the micrometeorological observing tower, which was set up at Anand
for the ‘Land-surface Processes Experiment’, was used for this study. The data for 26
April 1995, which had clear sky, and 27 Aprl 1995, which was cloudy, were
selected. Since the humidity data was not available, the latent heat flux was taken as
zero in the energy balance equation.

2. Physics of the model

It is assumed that the slab is either infinitely thin or has a temperature 6, which 1s
independent of depth, so that the rate of change of temperature of the slab is dictated
by the imbalance of fluxes between a forcing term “H’ and a restoring term "Y'
Thus, the predictive equation for surface soil temperature can be written as
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where Cg=C,AZ, C; being the volumetric heat capacity of the soil and AZ is the
thickness of the slab. C, is also called the “thermal inertia”. The forcing term ‘H’
is the ground heat flux Gy, obtained from the energy balance equation and the
restoring term is interpreted as the heat flux across the lower boundary of the slab,
which is transmitted in total to the upper boundary. We get the forcing term as :

H=Go=Ry - Hy - AE, (2.2)

where Ry , Hy , AEo are the net radiation, sensible heat flux and latent heat flux at the
surface , A being the latent heat of vapourisation =

The restoring term ‘Y’ is givenby : Y= —pu (63— ©) (2.3)
where ‘p’ is the coefficient of heat transferand 6 1s the mean substrata constant
temperature.

We consider a thin layer of soil of thickness, AZ. The time rate of change in the
temperature of the soil layer, neglecting the horizontal conduction of heat in the soil,
is given by :

06, oG
PCAZ — = — AZ (2.4)
at 0z

where ‘p’ is the density of the soil and °c’ is its specific heat (JKg'K™"). The
R.H.S. of Eq.(2.1) represents the difference in the heat fluxes into and out of the
layer. If the soil layer is very close to the surface, then the R.H.S. can be expressed as

oG
— = G -G
oz
where G, is the heat flux at depth AZ from the surface. Eq.(2.1) now becomes :
06,
Cs — =Go-Gy (2.5)
ot

where Cs = pe, is the volumetric heat capacity of the soil (J.m” K™"). The subsurface
heat flux at any depth ‘Z’ can be evaluated from Fourier’s law for heat conduction
in a homogeneous body, as :

G= -k(064/07) (2.6)
Where ‘k,’ is the thermal conductivity of the soil (W.m™. K™'). k,= CsKs, where
‘Ks’ is the thermal diffusivity (m®s™') Substituting in Eq.(2.1), we get -
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In the case of diurnal forcing, we take the upper boundary condition at Z=0, as :
0g(0,t) = Bo(t) + Ao Sin(Q t)
where Q=27/P, ‘P’ being the time period of the diurnal temperature wave, and 6 is
the surface temperature at Z=0. (2 Ap) is the difference between the maximum and
minimum temperature during the day . For the lower boundary we have : B(cc,t) =
6, the deep soil temperature. Combining the two boundary conditions, the solution
of Eq.(2.7) is given by :

Q2.7)

Og(Z;t) =Aoexp(-C;Z) Sin(Qt-CyZ) + 0 (2.8)

We define a “damping depth” (d), as the depth of soil across which the temperature
difference is (1/e) times the diurnal amplitude. The constant C,, is identified as the
reciprocal of the damping depth, i.e. C,= 1/d. Substituting Eq.(2.8) in Eq.(2.7) we
get : (C)Y'= Q/(2Ks), or d=V (2Ks/ Q)

Og(Z,t) = Ag exp(-Z/d) Sin (Qt-Z/d) + 8 2.9)
The soil heat flux at a depth ‘Z’ can be written from Eq.(2.6) as :

G(Zt)= «QCsk/2) 2 [04Zt) - 0 + 1/Q(86,/t)]  (2.10)

g

Go= G(0,f) and 64(0,t) = (1/8) ,[ 04(Z,t) dZ, when AZ is very small and equal to &
0
Substituting in Eq.(2.10), we get :

06, 2 4
a— = — G -Q(6;- 6) (2.11)
ot GCsd
Here a=(1+28/d). This is the force-restore formulation.

3. Computational Methodology ( Method A)

Eq.(2.11) contains four unknowns, viz., (a) d (b) Go (c) 6z (d) 6. We now give
the methodology of evaluating these unknowns from the observed temperatures.
(a) Damping depth ‘d’ and 6 : For evaluating ‘d’, we need the observed
temperatures ‘O  at a certain depth ‘Z,’, attime ‘n’. The computed temperature
at that depth and time is given by Eq.(2.7) as : I

0g(Z,n)= AT, Sin(Qt- @o-Z,/d) + © (3.4)
where AT, = Agexp(-Z, /d) and ‘¢’ is the phase of the temperature wave. Our
aim is to make the error between the computed and observed temperature at a depth
Z,, as small as possible, i.e. to make the quantity % { 6(Z,n) - B }* a minima.
Denoting the soil temperature 64(Z,n) by 6, we make the normalized quantity
given by :



Y {Ogm/ O - 1}?, summed over all times ‘n’, a minima. It is possible to express
the above parameter as follows :

Y {05/ Om - 1 )P =A+BOGP +COLF DX +2BX; ~2FX;, (3.2

where X, = AT, Sm(Z/d) X, = AT, Cos(Z/d) Z/d = tan“( X/ X2 ) (3.3)
A= T (00, -1); B= X { Sin’( Qta— @) (Oen)’ }

C= Z{Cos(Qt-q¥ ()’ }; D= Z[Sinf2(Qta- )Y OuV]  (3.4)
E=2X(6/080-1){Sin(Qty=0) 0 }; F=Z( 880 -1) { Cos(Qt,— ) 6u }

The problem now reduces to finding the values of X; and X; in Eq.(3.2), such that
the R.H.S. becomes minimum. The simplex method was applied in two stages, viz.

(i)  The minimum value of R.H.S. is obtained from a set of values of 6, keeping
X[ and X2 constant.

(ii)  The value of ) for which the R.H.S. of Eq.(3.2) is minimum, gave the
appropriate value of 0. With this value of 0, the appropriate values of
X and X, are obtained for which the R H.S. of Eq.(3.2) is 2 minima.

Having obtained the values of X; and X,, the value of the damping depth can be
obtained from Eq.(3.3).

(b) Soil heat flux Gon :  From Eq.(2.10) we get:
Goa=—-(QCsky/2)? [Bga- 6 + 1/Q(36g/31)]
FromEq(3.1), 6m- 0= AT, Sin(Qt,— 9), for Z;=0
B/ 0t = QAT Cos (Qt,— @)
*. Goa= (QCsk/2)"® AT\ [Sin(Qt,— 9)+Cos(Qt— @)] (3.5
(c) Surface temperature, 05, :  From Eq.(3.1) we get :
Og= AT, Sin(Qt,— 9-Z,/d) + 0 (3.6)
Net Radiation, Ry : Having computed the soil parameters, we now focus our

attention on the net radiation, which is an important parameter in the energy balance
equation. The net radiation is defined as follows:

Ry = (1-2) S Ty Sin w - 6 [ & (8g)" — €4 (82)" ] (3.7)

Where ‘a’ is the soil albido, ‘S’ is the solar constant, ‘Ty,” is the net sky
transmissivity, ‘y’ is the solar elevation angle, ‘g;’ is the emissivity of the surface
layer of soil, ‘€’ is the emissivity of air, ‘8,’ is the air temperature close to the
surface, and ‘6" is the surface temperature. The solar elevation angle is given as :

Siny = Sin¢ Sin& + Cos ¢ Cos & Cos H (3.8)
Where ‘¢’ is the latitude, ‘3’ is the declination of the sun, and “H’ is the hour
angle,



Sensible heat flux Hy . The sensible heat flux at thr surface is given by :

Ho = - p ¢, Cii Uy (8 - 8,) (.9)
Where ‘p’ is the density of air, ‘c,” is the specific heat of air under constant
pressure, ‘Cy’ is the transfer coefficient for heat, and ‘u,’ is the wind speed at a
height of 1m. above the surface.

4. Solution of Energy Balance equation

The energy balance equation at the surface is given by :
Ry -Go= Hp + AEg (4.1)

Ry and Hp are computed from Eqs.(3.7) and (3.9) respectively, in terms of surface

temperature g and air temperature 0, The first guess value of the surface
temperature is computed from Eq.(3.6) and a guess value is taken for the air
temperature. The ground heat flux is obtained from Eq.(3.5). The root of Eq.(4.1) is
obtained by the simplex method, which gave the appropriate values for 6, and 6,.

5. Computational Methodology ( Method B)
In this method, we consider the following parameters :

(@) Tm(Z,t ) is the maximum temperature at a depth ‘Z’, occurring at time ‘t,’.
Then an equation analogous to Eq.(3.1) can be written as :
Ta(Z,t,) = T+AT,exp(-Z/d) A (5.1
Where AT, is the diurnal temperature amplitude and T is the mean temperature

(b) Ta(Z,t;) is the temperature at a depth ‘Z’ and time °t,’. It is represented in
terms of all its harmonic components as follows :

Ta(Z,ta)= T+XATiSin(Quta — o — Zidy) (5.2)

Where ATy is the amplitude of the k-th harmonic component, ¢y is its phase
and dy is its ‘damping depth’. The summation is over all the harmonic
components ‘k’. The maximum temperature T, (Z, t,) can also be represented
by all its harmonic components as follows :

Tw(Z, t)= T+Z AT, Sin(Quto — @ —Z/ d) (5.3)
) Yo=(Ta/ T)=(Ts/ T)

(d Xo= (Tl Ty~ i T), where Tom and T,y are the maximum observed
temperature and the observed temperature at time t,, respectively, at depth Z.

Thus we have two time series, X, and Y, The computed time series Y, can be
expressed as follows :
Yo=(2 T) T Kok Cos{ O (ta+ tm ¥2 = @ } Sin { i (ta—tw 2 )

+(2/ T)Z (Xik Sin{ Qu (to+ 1t Y2 } Sin { & (ta —ta /2 } (5.4)



where (X = ATy Sin(Z/dy) and (X = ATy Cos (Z/ dv)
The three unknown parameters are X;, X; and T, for each of the harmonic
components. The time series Y, is correlated with the time series X, and the
correlation coefficient obtained as follows :
[Z(Ya- V- NP
P = ~ — (5.5)

[Z(Va- NZCL- XF
where ‘r’ is the correlation coefficient and the summation is over all the time
intervals for a particular harmonic component.

We use the simplex method to evaluate X, X; and T, by minimizing the quantity
(1/ P), ie. applying the condition that the correlation coefficient is maximum. The
damping depth for the k-th harmonic component is obtained from the expression :
&= 27/ tan_l[(Xl)k!(Xz)k] and the temperature amplitude for the k-th component is
givenby : ATy = [{(Xix}?+ {(Xax}?]® . The temperature amplitude at the surface
is given by : (AT k = ATy exp( Z/ dy). The surface temperature can now be
evaluated from Eq.(5.2). The remaining procedure is the same as in method A, for
each harmonic component.

6. Results and Discussion

Two days’ temperature data (26 and 27 Aprnl 1995), from the site of the
micrometeorological tower at Anand were used to test the methods developed herein.
The soil temperatures were recorded at depths varying from the surface to 60 cms.
below. Figure 1 shows the amplitudes of the various harmonic components of the
temperature wave recorded at a depth of 5 cms., and 20 cms., respectively, on each of
the aforesaid days. It may be seen that on 26 April, the amplitude of wave number
one was much larger than its amplitude on 27 April. It may be attributed to the clear
and cloudy conditions during the respective days. However, the amplitudes of the
other components, notably wave numbers 3,5 and 7, were larger on 27 April,
suggesting that on a cloudy day the components other than the diumnal, also make
significant contributions and should not be neglected. More than 80% of the total
contributions to the temperature amplitude, is made by the diumal and semi-diurnal
components.

Figure (2a) shows the simulation of the temperature at the surface and at a depth of 5
cms. for 26 April. The solid line curve represents the simulated temperature, which is
computed by considering only the diurnal component, while the curve joining the
asterisk represents the simulated temperature computed by considering the first two
components, i.e. diurnal and semi-diurnal components. The damping depths for the
two cases are indicated in the figure. It is seen that the simulated temperatures are
closer to the observed values in the latter case, where two components are considered.
Figure (2b) shows the same simulations for 26 April, but at a depth of 5 cms.. In this
figure also, it is seen that the simulated temperatures obtained by considering two
components are much closer to the observed values.

Figure 3 shows the simulation of the temperatures at the surface and at a depth of 5
cms. for 27 April. Here also the simulated temperatures are closer to the observed



temperatures when two components are considered, but the deviations are larger than
those obtained in figure 2.

Figure 4 shows the simulation of temperatures at the surface and at a depth of 5 cms.,
under the following conditions, viz., (i) All the harmonic components are considered
and the resultant damping depth computed and (ii) only the diurnal component is
considered, but the same damping depth as computed in (i) is used. It is seen that the
simulated temperatures are much closer to the observed values in case (i). Even the
simulation done with only the diurnal component deviates less from the observed
values as compared with figure (2b), because a more realistic value of the damping
depth is used..

Figure 5 shows the computed hourly variations of the different components of the
energy balance equation. It may be seen that net radiation, given by the difference
between the curves (a) and (b), minus the sensible heat flux, given by curve (d), does
not balance the ground heat flux, given by the curve (¢). This is because the latent
heat flux and the heat storage terms are not considered.

Once the damping depth “d” is obtained, the thermal diffusivity, ‘Ks’, of the soil
can be computed from the relation: Ks= d’> Q /2. If the specific heat ‘c’ of the
soil, its density and the volumetric soil moisture ‘6;’ is known, then the volumetric
heat capacity of the soil ‘Cs’ can be computed from the relation of Lehtveer and Int
(1977) and mentioned in Mihailovic et al (1991) :Cs= p(c + 41876;) (7.1)
Alternatively, if the volumetric heat capacity of the dry soil is known, the volumetric
soil moisture can be computed from Eq.(7.1). Assuming the following values for
‘c’, ‘p” and ‘6 : c= 840J Kg'; p=129x 10° Kg m™>;, =0, we obtain the
values of the various soil parameters as :

Ks= 845x10" m” s~

Cs= 1.08x10°J. m™> K

ke=092 W.m. K"

Dickinson (1988), found the typical values for the soil parameters as follows
Damping depth “d”, for a diurnal temperature wave is equal to 0.1m. within a factor
of 2 in either direction. The thermal conductivity, k, , is equal to 1-2 W. m™". K™,
for soils with some moisture and the ratio (kJ/d)~15+5 W. m™ K™'. The values
computed in this study agree well with these typical values, taking into consideration
the fact that moisture was not considered.

7 Conclusions

The methods described in this paper provide a simple method of computing the
surface temperature, which is difficult to measure accurately. It is also shown that the
accuracy of the simulated temperature can be improved significantly, by including the
other harmonic components of the temperature wave, particularly during cloudy
conditions. The use of a more realistic dammng depth improves the accuracy of the
simulated temperatures. The damping depth increases for the higher components of
the temperature wave, indicating more penetrative power for these components.
Thus, even though the amplitudes of these components are small, they can penetrate
deeper into the soil.
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Legends of the Figures

: Amplitudes of the different components of the observed soil

temperature wave at Anand on 26 April 1995, at depths of 5 cms.
and 20 cms., respectively

: Same as in figure (1a) for 27 April 1995

: Simulated and observed temperatures over a period of 24 hours, at

the surface on 26 April 1995

: Same as in figure (2a), at a depth of 5 cms.

: Simulated and observed temperatures over a period of 24 hours, at

the surface on 27 April 1995

: Same as in figure (2a), at a depth of 5 cms.

: Simulated and observed temperatures over a period of 24 hours, at

the surface on 27 April 1995, with (i) diurnal component only, but
using a more realistic value for damping depth and (ii) all the
harmonic components.

: Simulated and observed temperatures over a period of 24 hours, at

a depth of 5 cms.on 27 April 1995, with (i) all components but
using a constant value for damping depth as used in figure (4a) and
(11) all the harmonic components and computing the values of the
damping depths separately for each component

. Same as in figure (4b) with (i) only diurnal component and the

value of damping depth appropriate to this component and (i1)
only diurnal component but with the value of the damping depth as
used in figure (4a)

: Hourly variations of the different components of the energy

balance equation
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