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Abstract

Atmospheric flows as recorded in meteorological parameters such as
temperature, pressure, etc., are characterized by turbulent (irregular or
nonlinear) fluctuations in space and time. Noisy or irregular signals are
common to dynamical systems in nature and are usually thought of as being
composed of, or driven by random processes. However, power spectral
analyses of such irregular fluctuations reveal inverse power-law form for
power spectra implying long-range spatiotemporal correlations. Such non-local
connections are ubiquitous to dynamical systems and are recently identified as
signatures of self-organized criticality. Long-range correlations imply selfsimilar
or fractal fluctuations in space and time. The apparently irregular or nonlinear
fluctuations may therefore be described and quantified in terms of the newly
developed concept of fractals. One common statistical measure of variability is
relative dispersion (RD) which is equal to the standard deviation divided by the
mean. The RD decreases with increase in measurement time or space scale.
Standard statistical theory does not provide satisfactory explanation for such
resolution dependent decrease in RD. In this paper, it is shown that the
resolution (time) dependent RD can be quantified in terms of the fractal
dimension D. Global TOGA (Tropical Ocean Global Atmosphere) daily
temperatures at 850, 500 and 200 hPa for the 5-year period 1986 - 1990 were
used for the study.

Keywords : Fractals, Self-organized criticality, Relative dispersion,
Atmospheric temperature.

1. Introduction

Atmospheric flows as recorded in meteorological parameters such as
temperature, pressure, etc. are characterized by turbulent (irregular or
nonlinear) fluctuations in space and time. Noisy or irregular signals are common
to dynamical systems in nature and are usually thought of as being composed
of, or driven by random processes [1]. However, power spectral analysis of such
irregular fluctuations reveal inverse power-law form for power spectra implying
long-range spatiotemporal correlations. Such non-local connections are



ubiquitous to dynamical systems in nature and are recently identified as
signatures of self-organized criticality [2]. Long-range correlations imply
selfsimilar or fractal fluctuations in space and time. The apparently irregular or
nonlinear fluctuations may therefore be described and quantified in terms of the
newly developed concept of fractals. Lovejoy and his group [3-5] have
documented the selfsimilar fractal geometry of the space-time fluctuations in
atmospheric flows as manifested in the fractal geometry of cloud shapes and the
inverse power law form for power spectra of temporal fluctuations of
meteorological parameters. The fractal shape of clouds over the Indian region
has been identified [6-7] Self-organized criticality in the temporal evolution of
rainfall, atmospheric total ozone and temperature have been identified [8-12].In
this paper it is shown that the fractal nature of meteorological time series
enables quantification of the relation between variances at different time
resolutions, i.e. the variability at shorter time resolutions may be inferred from
more convenient measurements at larger time-averaged measurements.
Standard statistical procedures [13-14] do not provide for quantifying the
observed increase in variance associated with higher resolution (space-time)
measurements of the fractal (self-similar) time series with long-range
spatiotemporal correlations. The fractal description of the relationships between
variances of the time-averaged variable at different time-resolutions will help to
identify suitable time-interval for predictability studies [15].

2. Data and analysis

TOGA (Tropical Ocean Global Atmosphere) daily temperature data [16]
for the region 50° N to 50° S at 5 degree intervals for the 1800-day period from 1
Jan 1986 to 1990 was used for the study.

In Statistics, the relative dispersion RD analysis compares the variance of
a variable as the measurement resolution increases. The coefficient of variation,
namely RD, is an index of variability or heterogeneity within the domain. RD
equals the standard deviation divided by the mean. In general, the observed
degree of heterogeneity increases as resolution of the method increases. When
these increases are proportional, the relation can be fractal or at least
describable by a fractal relation, if it holds true over a sizable range of
observation unit sizes. Given that a fractal relation exists between the observed
RD of temperature and n, the averaging time interval in days, the relation can
be expressed by the equation [14]

1-D
RD(n) = RD(n, ){i] (1)

n,
where Ny is the available time resolution (1 day in the present study). The
reason for calling this a fractal relationship rather than just a power law
relationship is that the possible slopes of the relationship are bounded by limits,
and the fractal dimension D, gives insight into the nature of the data. These



equations, describing the relation between a measured quantity and the
temporal resolution of measurement, are also found in mathematical constructs
and natural phenomena having fractal geometry [17-19].

Traditional statistical methods deal with perfectly random variations where
any one set of observations at a particular size of observed unit serves to
characterize it completely such that

RD(n) - RP(7)

Jn/n, )

A general approach to describing variances, in particular for the
ubiquitous self-similar (correlated) time series is not provided in conventional
statistics. There is no law that says that Jog RD versus log n for the number n
of aggregates of non-random variables should show self-similarity. However, the
grouping of neighbors must give a monotonically decreasing RD, since the
averaging smoothes out extreme fluctuations. The fractal dimension D gives a
measure of the temporal correlation r between defined time intervals. Van Beek
et. al. [20] have derived the general expression

b (3)
for precise description of heterogeneity of regional myocardial blood flows over
a wide range of domain sizes. Selvam and Sapre [15] have shown that the
above relationship is applicable for meteorological time series.

The above equation is an important derivation since it summarizes the
properties of the data set. If there is no temporal correlation, r=0, so that
when the temperature fluctuations are completely random the fractal dimension
D=1.5 and Eq.(1) reduces to Eq.(2) consistent with traditional statistics. This
gives a maximal slope in the plots of RD versus the time interval for averaging.
At the opposite extreme, with perfect correlation, r=1, temperature fluctuations
are uniform and the fractal dimension is 7.0. Regions of averaging time intervals
for which D is a constant have averaging-time independent correlation
coefficient between neighbors. Eq.(1) and (3) can be applied to all temporal
fractals. If a fractal relationship is a reasonably good approximation, even over a
decade or so, then it will prove useful in considerations of temporal functions
and might be useful in initiating research for the underlying basis for correlation.

In the present study the relative dispersion RD was computed for different
averaging-time intervals N which are factors of the total number of days N (1800
days). The fractal dimension D was computed for the time intervals n from Eq.
(1) and is shown in Figs.1(a-c) for all grid points in each latitude belt for the
three tropospheric levels (850 hPa, 500 hPa, 200 hPa).

In an earlier work Mary Selvam et al [7] have shown that spatial
integration of enclosed small scale fluctuations give rise to large scale
circulations which follow logarithmic spiral trajectory. Therefore, the relative



dispersion RD for the various averaging time intervals n on logarithmic scale
should follow normal distribution according to the Central Limit Theorem in

Statistics. A graph of RD versus the normalized time scale (logarithmic) n is
given as

yia logn

log tg,
should follow normal distribution characteristics. In Eq.(4) tsp is the time scale
where the RD is equal to 50% of its value at the highest resolution. Fig.2 shows
the mean normalized percentage RD with respect to the normalized time scale ¢

(Eq.4) for each latitude belt for the three levels 850 hPa, 500 hPa, and 200 hPa.
The statistical normal distribution also is shown in Fig.2.

=1 (4)

3. Discussion and conclusion

The observed decrease in relative dispersion RD of temperature with
increase in averaging time interval exhibits the following universal
characteristics at all the grid points for the three levels ( 850 hPa, 500 hPa,
200 hPa) used in this study.

y 4 The fractal dimension D of RD remains almost constant, close to a
value equal to 1.1 for averaging time intervals greater than 10-days
and increases rapidly, particularly in the higher latitudes ( greater
than 10-degrees) for averaging time intervals less than 10-days.
(Figs. 1(a-c)).

2. The RD follows universal statistical normal distribution with respect
to normalized averaging-time scale t (Fig.2).

The above fractal analyses technique provides unique quantification for
resolution dependent relative dispersion RD.

4. Acknowledgments : The authors are grateful to Dr. A.S.R. Murty for his
keen interest and encouragement during the course of the study.

5. References

(1] J.B. Bassingthwaite. and R.P. Beyer, Physica D53, (1991) 71-84.

(2] P.C. Bak, C.Tang and K. Wiesenfeld, Phys. Rev. A 38 (1988) 364-374

(3] S. Lovejoy and D. Schertzer, Bull Amer. Meteorol. Soc. 67(1986)21-32.

(4] Y. Tessier , S. Lovejoy and D. Schertzer, J. Appl. Meteorol. 32 (1993)
223-250.

(5] Y. Tessier, S. Lovejoy, P. Hubert, D. Schertzer and S. Pecknold,
J.Geophysics. Res. 101 (D21)(1996) 26427-26440.

(6] P.S. Jain, Mausam 40 (1989) 311-316.



[7]
(8]

(€]

(10]
[11]
[12]
[13]
[14]

(15]

[16]
[17]
[18]
[19]

[20]

N. Jayanthi, A. Gupta and A. Mary Selvam, Mausam 41(1980)579-582.
A.Mary Selvam and J.S.Pethkar and M.K.Kulkarni, Int'l Climatology
12 (1992) 137-152.

A. Mary Selvam, Adv.Atmos.Sci.10 (1993) 221-226.

A. Mary Selvam and M. Radhamani, Mausam 46(3) (1995) 297-302.
A. Mary Selvam and R.R. Joshi, Int'l.J.Climatol. 15 (1995) 613-624.
A. Mary Selvam, J.S. Pethkar, M.K. Kulkarni and R.Vijaykumar,Int'l.J.
Climatol. 16(1996)1-11.

G.W.Snedecor .and W.G.Cochran., Statistical Methods, (Ames,|.A.:
lowa State University Press, 1980)

R.B. King, L.J.Weissman and J.B. Bassingthwaighte, Annals of
Biomedical Engineering 18 (1990)111-121.

A.M. Selvam and V.V.Sapre, The Fractal Nature of MONTBLEX time
series data,lITM Research Report No.RR-069 (Indian Institute of
Tropical Meteorology, Pune 411 008, India, 1996)

C.J.Finch, TOGA CD-ROM Users' Guide (Jet Propulsion Laboratory,
California Institute of Technology,USA,1994)

' B.B.Mandelbrot, The Fractal Geometry of Nature, (W.H.Freeman and

Co.,San Franscisco,CA,1983)

H.O. Peitgen. and P.H.Richter, The Beauty of Fractals : Images of
Complex Dynamical Systems. (Springer-Verlag.,Berlin, 1986)

H.O. Peitgen and D. Saupe (Eds), The Science of Fractal Images,
(Springer-Verlag. New York, 1988)

J.H.G.M. Van Beek, S.A. Roger and J.B.Bassingthwaighte,
Am.J.Physial 257 (Heart. Circ. Physiol. 26) (1989) H1670-H1680



S 405 01 N 4,05 WoJ} j18q 8pniiie| Yoes Joj sjuiod pub (e 18 B4y 068 i ainjeadws) Jo QY Uoissadsip
SAlE|a] JO anjeA Juspuadsp uonnjosal ayy BuiApuenb jeassiul awy BuibeisAe snsieA g UoISUBWIP |eyoel ey ‘6i4

SAVQO NI IWIL ONIOVHIAV
I o 00F  Doos o 00F  oo0% ] 00F  Co0F 0 oor 0o 0 o oo

T T 'l Tr ARARELES iadad T T T T

193539932333

5% osw S oF S 01 § 03

SO8438335383a39943333203333294a3
d43485938353349332

dAZ3GIATIANASIAInEq
= i e S e e B s B o B e (e Je B i R B T B

NOISN3WIO "v.1OvHd

NG N OF N ST NOZ NG

N(E NGE N OF N Gy NS

Y L, T L I

“PI6 voibap S T 808 0T NG
8uMeJedual U6 00 BdY 0S8 (SABPOOBTIOB-986T VOOL




Bdy 0QG Joj e} ainbi4 1o} se awes : q| ‘bi4

ST ATANA[TIATTHAIAIN D IAIALTATIAATATAATST AN A3

SAVA NI FWIL ONIOVHIAVY

NOE

TR TR

N GE

PYTIPIN S PTTE A T

N 0¥

N Gb

o 0or  ooor i 0oL oo 0 oov  ooov 0 00F  000F 0 o oo
T T i ™ LR i R B PR o4O R i iU i i L 0
n
1
£
n
151
o
o
a1
505 SGr S0v SGE S0t T W ww
N ™
03
Luiss

N5

aJnjeJadusy Juwb

i M TPLEPI P
p1O 28108p G ! SOS 03 NOS

00 edu 00S (SABPOO8TIO6-986T VYOOL

= e o Beron (R o e R B s 2 B i o e B

SAJ3GaFTagATI

NOISNIWIA "W.i1OvHd




edY 00z Jo} el ainbi4 Joj se sweg : o} bBi4

ANa33x’xIa3Ia33333

SHYa2aAaIYEIRANITq9ATAS

SAVO NI 3WIL INIOVHIAVY

ag29594

o 00F 0001 0 00r 0007 o oor 000k 1 0oF o001 OF o oo
e s 1ot et e A S A T e e e [y
mn
44
€
n
L 161
a
n
S5 14 SOt g1
S S OF SGE S S
e e L T ) } i D e L e LT RS R A Fores o
n
4]
€
"
71
n
0
S G Sk S Sl S 01 58 3 (o
&7
L L LR (L2 e L2 st etk e e e L ki b 02

NOE

TP TR

FTAPETEE YT TR T sas s L

NGE N OF NGy N 05

DT S5 G 1 605 O3 NOG
aJnjesadual WO 00 BdY 002 (SAEPOOBTIO6-986T VYOOL

=aN¥agasgssaza49n

42353243

NOISNIWIA "v.1OvHd




NORMALISED RELATIVE DISPERSION : LATITUDINAL MEANS
TOGA 00gmt temperature 1986 - 1990 (1800 days)
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Fig. 2 : Latitudinal mean graphs of normalized relative dispersion versus
normalized averaging time interval. The statistical normal distribution is also
shown in the figure




