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Reduction of AGCM Systematic Error by Artificial Neural Network: A
New Approach for Dynamical Seasonal Prediction of Indian Summer
Monsoon Rainfall

A. K. Sahai and V. Satyan

ABSTRACT

The ability of state-of-the-art Atmospheric General Circulation Models (AGCMs) to
extract all possible information from the data available (i.e., initial conditions and
boundary conditions etc.) and produce seasonal forecasts is limited by several sources of
uncertainties and errors. One way to tackle this problem is to use ensemble forecasts and
multi-model multi-ensemble. The other approach is to combine statistical and dynamical
models. Some studies using this approach are based on empirical orthogonal function
analysis, canonical correlation analysis and singular value decomposition. These methods
are designed to identify the linear combinations of variables in one field that are most
strongly correlated with linear combinations of variables in another field. If the structure
of the data is inherently linear then these methods are best in feature extraction. However,
if the data contain nonlinear structure, it will not be detected. Recently Artificial Neural
Network (ANN) has been used for nonlinear principal component analysis to extract non-
linear features. The objective of this paper is to combine the nonlinear feature extracting
capability of ANNS for reduction of systematic errors in simulation of AGCMs.

The most challenging, and of course, a litmus test for any GCM is to simulate the
variability of the Indian summer monsoon rainfall (ISMR). It has been shown that models
exhibit greater fidelity in capturing the large-scale dynamical fluctuations than the
regional scale rainfall variation. Therefore AGCM produced parameters, which include
dynamical parameters along with rainfall, are selected and ANN models have been
developed. The region selected is from 5°N to 35°N and from 65°E to 95°E. Various
skill-evaluating parameters were calculated do demonstrate the skill of the method. It is
shown that the corrected AGCM forecasts are better, beyond reasonable doubt, than that
of random and climatological forecasts. The improvement is also in accordance with El
Nino Southern- Oscillation (ENSO) and ISMR relationship. Some improvements are also
reported on real time forecasts. .



1. Introduction

Asian monsoon is a major component of the general circulation, which influences
over one third of the tropical region for several months during northern summer. Most
parts of south and East Asia receive bulk of their annual rainfall during the summer
monsoon season. Therefore forecasting space-time distribution of this rainfall is
intimately linked to the economy, hydropower generation, drinking water availability etc.
of more than a billion people.

Indian summer monsoon, which is a part of Asian monsoon, is distinct in many
aspects and particularly due to orographic features in the north by the Himalayas and
along West Coast by Western Ghats. The agricultural practices and crop yields of India
are heavily dependent on the rainfall in this season. About 65% of the cultivated land in
India is under the influence of rainfed agriculture (Swaminathan, 1998). Unlike irrigated
agriculture, rainfed agriculture is usually diverse and risk prone. Even the small
variations in the timing and the quantity of monsoon rainfall have the potential to impact
on agricultural output. Every year we hear of terrible human suffering as long periods of
drought or floods devastate whole country and it is very difficult to deal with such
problems. Prior knowledge of monsoon behavior will help Indian farmers and policy
makers, to take advantage of good monsoons and also to minimize crop damage and
human hardship during adverse monsoons. These are the issues which has motivated
many studies on forecasting of Indian Summer Monsoon Rainfall (ISMR) since more
than a century ago (Blanford, 1884, Walker 1908) and has been continued in recent years
(Thapaliyal, 1981; Shukla and Paolino, 1983; Mooley et. al., 1986; Bhalme et. al. 1986;
Shukla and Mooley, 1987; Gowariker et. al., 1991; Navino and Ceccatto, 1994; Goswami
and Srividya, 1996; Venkatesan et. al., 1997; and Sahai et. al.; 2000). The techniques
used in these studies are empirical statistical and Artificial Neural Networks (ANNs).
However the successful and reliable forecasting of ISMR on intraseasonal to seasonal
time scale and regional to country as a whole on spatial scale is still a great challenge for
meteorologists.

Apart from the statistical and ANN models for prediction of ISMR the dynamical
models particularly Atmospheric General Circulation Models (AGCMs) have also been
used to simulate various aspects of the monsoon system in order to predict ISMR. Since
the pioneering investigations by Manabe et. al. (1974) and Hahn and Manabe (1975)
there have been several studies of Indian monsoon with AGCM (Palmer et. al., 1992;
Chen and Yen, 1994; Ju and Slingo, 1995; Sperber and Palmer, 1996, Soman and Slingo;
1997). An understanding of how well the models can simulate the monsoon variations,
when forced by observed SST, is important for assessing the potential for generating
predictions of the Indian monsoon on seasonal to interannual scale. The simulation of
ISMR over Indian region by various AGCMs differ not only considerably from one
model to another but also deviates considerably from observations in great details such as
the location and intensity of the major rainfall belts, the total rainfall over Indian land
mass and the interannual variability. Sperber and Palmer (1996) evaluated the
performance of variability of rainfall using 32 models for the period 1979- 1988 as a part
of the Atmospheric Model Inter-comparison Project (AMIP). Their results showed that




the precipitation variation over India is less well simulated. But by evaluating the
simulation of interannual variability of a wind shear index over the summer monsoon
region they pointed out that the models exhibit greater fidelity in capturing the large-scale
dynamical fluctuations than the regional scale rainfall variation. In another study while
comparing the performance of 30 models from AMIP runs Gadgil and Sajni (1998) have
pointed out that the rainfall pattern over the Indian longitudes is extremely complex and
not surprisingly, the simulations of the mean ISMR pattern has proved to be a difficult

task.

Modeling and observational evidences suggest that the slowly varying boundary
conditions of Sea Surface Temperature (SST), sea ice, soil moisture and snow at the
earth's surface can influence the interannual variability of the atmospheric circulation
(Charney and Shukla, 1981, Yang and Lau, 1998). So if the other boundary forcings are
kept fixed and the AGCM is forced only by observed SST, then it is believed that the
AGCM should nonlinearly transform the SST information from around the globe and
produce a set of solutions over a particular region. The AGCM used in the present study
is UKMO model. This model has shown systematic errors in producing spatial anomaly
patterns and geographically shifting rainfall anomaly dipoles and their strength relative to
observations in the region considered. Such errors degrade the skill of the model when
grid-point comparisons between simulations and observations are made as is very
common. The skills of more complicated CPU time consuming GCMS are still not better
than comparatively negligible CPU time consuming empirical methods when compared
for seasonal prediction of ISMR. But the current dynamical models have the advantage
over the empirical models in the way that they can provide time evolution and spatial
distribution of rainfall at desired spatial and temporal resolutions. Also the cause-and-
effect relationship among various processes (like atmosphere-ocean interaction through
SST variations, atmosphere-land interaction through albedo, soil moisture and vegetation
changes etc.) represented in the model can also be analyzed.

The ability of state-of-the-art models to extract all possible information from the
data available and produce seasonal forecasts is limited by several sources of
uncertainties and errors. One way to tackle this problem is to use ensemble forecasts and
multi-model multi-ensemble forecasts (Stern and Miyakoda, 1995; Kumar et. al., 1996;
Brankovic and Palmer, 1997; Krishnamurti et. al., 1999). The other approach is to
combine statistical and dynamical models (Sarda et. al., 1996 and Feddersen et. al.,
1999). This approach is based on empirical orthogonal function analysis, canonical
correlation analysis and singular value decomposition. These methods are designed to
identify the linear combinations of variables in one field that are most strongly correlated
with linear combinations of variables in another field. If the structure of the data is
inherently linear then these methods are best in feature extraction. However, if the data
contain nonlinear structure, it will not be detected. Recently ANNs have been used
(Monahan, 2000) for nonlinear principal component analysis to extract non- linear
features. The objective of this paper is to combine the nonlinear feature extracting
capability of ANNs for reduction of systematic errors in simulation of AGCMs in order
to achieve realistic simulation of rainfall over Indian region. For this purpose we have
selected six parameters produced by model (rainfall, vorticity at 700 and 850 mb, relative



humidity at 700 mb, vertical velocity and surface pressure) and have forced them to get
observed rainfall. The method in detail is discussed in section 3. The reason for taking
dynamical parameters lies in the conclusion by Sperber and Palmer (1996) that models
exhibit greater fidelity in capturing the large-scale dynamical fluctuations than the
regional scale rainfall variation. The region selected is from 5°N to 35°N and from 65°E
to 95°E. Though the region selected seems to be very small, the skillful prediction of
summer monsoon rainfall in this region is vital for the socio-economic activities of nearly
30% of the global population. '

When an AGCM is run with the observed SST, it is pre- requisite that it should
well simulate the events associated with major variation of SST field, such as ENSO. It is
well known that there is a correspondence between deficit (excess) in the ISMR and the
occurrence of El- nino (La- nina) events associated with warm (cold) events in the
pacific. Recent observational studies of Kripalani and Kulkarni (1997) and Krishna
Kumar et. al. (1999) have shown the weakening of ENSO- ISMR relationship. How
AGCM behaves in this context and how far ANN corrected simulations of AGCM
captured ENSO- ISMR relationship is also one concern of this communication.

One of the main objectives of the present communication is to examine the
success of the ANN correction on real time forecast of ISMR. If ANN correction is able
to improve the skill of AGCM at least comparable with statistical models, then it will be
an achievement. For this, experimental prediction with five different initial conditions
and May SST anomaly persisted for the whole monsoon season has been done from the
period 1998 to 2000. Though the results cannot be compared with the performance of
ANN corrections when model is run by observed SST, still the results were found
encouraging.

2. Model Description and Experimental and observational Data

The model used in this study is UKMO Unified Model (HadAM2b). It is a global
grid point AGCM (Cullen, 1993) with conservation split-explicit integration scheme
(Cullen and Davies, 1991), which may be configured for numerical weather prediction or
climate modeling. It has horizontal resolution of 3.75°longx2.5°1at when used for climate
modeling. The model uses hybrid vertical coordinate system with 19 levels in the vertical
and sophisticated parameterizations of radiation, boundary layer, large-scale cloud and
precipitation, gravity- wave drag and convection. Version HadAM2b (Stratton, 1999) is
an improved version of the atmospheric component of the coupled ocean-atmosphere
climate model HadCM2, described by Jones et. al. (1997).

The model is integrated with observed SST for a period of 17 years from 1979-95
as a part of the CLIVAR Intercomparison Project of Asian-Australian Monsoon
Climatology and Variability by the use of Atmospheric GCM. The monthly mean global
SST and sea- ice as prescribed by Atmospheric Model Intercomparision Project II (AMIP
IT) were used. Other boundary conditions such as soil moisture, albedo, snow cover etc.
are prescribed from climatology at the initial time and in the course of integration the
model updates these parameters. Carbondioxide mixing ratio and monthly vertical



distribution of ozone are also prescribed. The daily output fields of precipitation, surface
pressure, vertical velocity at 850mb, relative humidity at 700mb and components of
horizontal velocity at 850 and 700mb were retained from 1* June to 30™ September for
each of the 17 years and for whole globe. The vorticity at 850 and 700mb was calculated
from the components of horizontal velocity. Data for six fields (precipitation, surface
pressure, vertical velocity at 850mb, relative humidity at 700mb and vorticity at 850 and
700mb) were interpolated from 3.75°long x 2.5°lat model grid to the centre of 2.5°long x
2.5°lat grid. From this data set the data for the region from 5°N to 35°N and from 65°E to
95°E were extracted. And finally monthly means for June, July, August and September
were prepared.

The observational data set of the global precipitation monthly mean fields are
derived from the Climate Prediction Center Merged Analysis Precipitation (CMAP) data
(Xie and Arkin, 1997) available from 1979 to 1999 on 2.5°long x 2.5°lat grid. From this
data set monthly means for June, July, August and September were extracted for the
region under consideration.

The error correction technique proposed in the present communication was tested
for real time forecast. Five-member ensemble integration was carried out for which initial
conditions were taken from the model dumps corresponding to 1* April of the last five
years of 17-year integration of the same model with climatological SST over global
oceans. Boundary conditions of SST used are created by persisting May SST anomalies
on the climatology of the remaining months of the season. The model was integrated
from April to September for the year 1998, 1999 and 2000.

3. Methodology
3.1 ANN- a brief review

Artificial Neural Networks are a class of computational models and were
conceived from the logical processing of biological nervous system. They are composed
of a series of parallel layers, which are interconnected computational nodes or neurons
and can perform a variety of statistical modelling tasks. The traditional statistical
methods invariably have inherent assumptions regarding the distribution of data and the
functional relationships and their violation may severely affect the performance of the
model. On the other hand, ANNs are extremely robust with regard to a priori distribution
of data. Also in ANN analysis no assumptions are made regarding the underlying
functions and in fact by varying the number of nodes in hidden layers one may
effectively parameterize the space of all functions. ANNs are the systems that have the
property of adaptation or learning. These properties make ANNSs an ideal choice in many
cases and they have been successfully used in nonlinear regression, classification,
clustering, time-series prediction and computing non-linear PCA (Sarle, 1994; Hill et. al.,
1994, Cheng and Titterington, 1994; Connor et. al.,, 1994, Sahai et. al., 2000 and
Monahan, 2000). Although ANN models are not significantly different from a number of
standard statistical models, they are extremely valuable as they provide a flexible way of
implementing them (Maier and Dandy, 1999).



Feed forward ANN model has been most widely used to perform generalized
nonlinear regression. This type of model is composed of a series of parallel layers (the
first one is input layer, last one is output layer and there may be one or more intermediate
layers called hidden layers), each of which contains a number of processing elements, or
neurons, such that the output of the ith layer is used as input to the (i+1)th. In this study
we have used a model with one hidden layer. The jth neuron in this hidden layer is
assigned a value y;, given in terms of the input values x; by

Y =tanh(Zw5,-x,- +ij, ¢))

i

and the kth neuron in the output layer (z) is calculated in terms of y; by

Zi =tanh(2ﬁﬁyj +S’k], ()
J

Where w's and b's are the weight and bias parameters, respectively, and the hyperbolic
function is used as the inner- layer transfer function. Now the problem is to determine
weights and biases. This is done through network training. For this the data is divided
into two mutually exclusive parts - training and test sets. The weights are randomly
initialized. To construct an ANN model for forecasting, the predictor variables are used
as the input, and the predictands as the output. With o; denoting the observed data, the
ANN is trained by finding the optimal values of the weights and bias parameters, which
will minimize the cost function: '

J=Y (zx —or )% 3)

where the rhs of the equation is simply the total squared error of the output. The optimal
parameters can be found by back- propagation algorithm. A detailed discussion on feed-
forward ANN model with error- back propagation can be found in Herz et. al. (1991),
Muller and Reinhardt (1991), Masters (1993), Bishop(1994) and Haykin (1994). Once the
training is complete the weights are frozen and the data from test set is presented as input
to evaluate the performance. It is the performance of the network on this test data set that
is the true measure of the predictive capability of the network. Due to large number of
parameters and the great flexibility of the ANN, the model output may fit the data very
well on training data set yet producing poor forecasts on the test data set.

3.2 The network design
The network consists of one hidden layer besides input and output layers. The

input layer has 24 neurons (x; , i=1,2,...,24), which are the model-produced values of six
parameters (rainfall, vorticity at 700 and 850 mb, relative humidity at 700 mb, vertical



velocity and surface pressure) kept in a sequence and for the four months June to
September. The output layer consists of four neurons, which are observed rainfall values
for the same months. Since the inner- layer transfer function is hyperbolic tangent, the
input and output values were normalized such that they lie between +1 and -1. There are
50 neurons in the hidden layer. Thus the total numbers of parameters (weights and biases)
which are to be determined through training are 1454 (24x50+50+50x4+4). Since there is
one pattern for each of the 17 seasons and for each of the 144 grids thus the total number
of patterns is 2448. These patterns are divided into two parts- training and test. The
training set consists of 2160 patterns (from the year 1979 t0 1993) and the test set of 288
(year 1994 and 1995). Since the number of parameters (1454) in the ANN model is much
less than the number of training patterns (2160), there is less possibility of over fitting.
However, to avoid the over fitting if any we have trained 11 networks with different
initializations and out of this, 6, which were performing best on the test set, have been
selected. The final output is taken as the average of outputs from these 6 networks. This
is called the ensemble method (Perrone and Cooper, 1993).

3.3 The evaluation performance statistics

Let F; (=1,2,,...,M, j=1,2,...,N; where M (=144) is the number of grid points and
N (=17) is the number of years) be the forecasted precipitation field (either raw model
output or ANN corrected model output) and O;; be the observed precipitation field. The
anomalies in these fields are defined as

A=Ay -7 P12, M @)
where 4; is the time mean at each grid iand is given as
- 1 X
4; = F Z i=12,., M (5)

Here A may be F or O. Only 15-year values (1979-1993) were used when calculating
means and standard deviations. The following performance evaluation were calculated at
each grid point:

For anomaly forecast

(1) Correlation coefficient (r;): One possible choice of verification measure is the
correlation coefficient (#;) defined as follows:

1 N
EZF;,JXO:J
J=1 ;
. L b=id (6)
AP AR
1 N
where (Ui)A = FZ( ;J}z (7)
Jj=1

is the standard deviation of A. 7



This describes the strength of the linear relationships between forecasts and
corresponding observations. The range of r; is -1<r<1. For good forecasts #; should be
significantly greater than 0, for perfect forecast =1, if there is no predictability »=0 and
for inverse forecasts 7,<0. But correlation coefficients are not true measure of variability,
that is, the correlation coefficients will not tell whether, for example, a prediction is near
climatology in absolute value. Therefore another parameter, skill score, is calculated.

(i1) Skill Score (SS)): The skill score is defined as

2
SS; = 1—(%] i=12.,M (8)
(O' i )o

The RMSE is traditionally calculated from the difference of the forecasted and observed
fields, but since the difference of model simulated mean values and observed mean
values (fig. 1 and fig. 2) are of the order of the magnitude of observed values on many
grid points, therefore it will be better to calculate RMSE in the following way for
reasonable comparison:

(F -0, F  i=12,.M ©)

| N
RMSE; = FZ

j=

This parameter is a good measure of forecast. This measures the accuracy of the forecasts
of interest relative to the climatological forecasts. For a perfect forecast SS; = 1 and for
always climatological forecasts it is equal to 0. If it is less than zero it implies that the
forecast is even worse than the always-climatological forecasts.

For categorical Forecast

Apart from these, two more parameters were also calculated based on the
categorical forecast. It is customary to issue precipitation forecast in categorical form like
above normal, normal and below normal. Therefore to verify the results a 3x3
contingency table is prepared for each grid point. The categories are defined as follows

Categoryl 4; ;> (o}) 4
Category 2 (crj) T A,f, j2 —(0',- ) A (10)
Category3 4 ; <—(0})

Where A takes the values of F forecast category and the values of O for observed
category. Then Heidke Skill Score (HSS) and Percent Correct (PC) values were
calculated for each grid points (the details of making contingency table and calculating
HSS and PC can be found in Sahai et. al., 2000, Barnston, 1992 and Perrone and Miller,
1985). The value of HSS is 1 for all correct forecasts and 0 for random forecasts. Values




greater than 0 indicate the improvement of forecast over random forecast. Values less
than 0 indicate forecasts are worse than random forecast. The values of PC are 100 for all
correct forecasts and with 3 categories its value for random forecast is 33.33.

All these above performance evaluation parameters have been calculated for each
grid points. Now some parameters must be calculated for assessing performance year by
year. For this following two parameters were calculated:

(i) Spatial anomaly correlation (SAC):
]' & L n
Ve Z Fi; %0,
SAC, =—=5
(o) % (0'0 ) j

L4 r I A r ‘
where A,.,j = Ar‘,;' __A}ZAr'J

i=1

J=1 20N (11)

g —t J=12,.,N {12)
and (JA)_;' = “—Z(A:R;)

M i=l

are spatial anomaly mean and standard deviation for particular year ;.

4

(i)  Spatial skill score (SSS)

§8§ ;=1 0=l j=12,..N (13)

It has been shown that if SAC;> 0.6 and also SSS; > 0 then the forecast field are useful.
These parameters were calculated for the whole region under consideration 5°N to 35°N
and from 65°E to 95°E and also for the Indian landmass as shown in figure 8.

4. Improvement due to ANN correction
4.1 Discrepancies between model and observed climatology

The 15-year (1979 to 1993) observed (CMAP) mean patterns of seasonal rainfall
for monsoon season are shown in Fig. 1(b). This figure shows two rainbelts one along the
eastern part of foothills of Himalayas (rainbelt I) and other along the West Coast of
peninsula (rainbelt II). These rainbelts are associated with the occurrence of heavy
rainfall due to orography of the Himalayas and the Western Ghats. There is also a third
rainbelt associated with the continental ITCZ (commonly known as monsoon trough in
Indian region) and extends from the Bay of Bengal to the west- northwest across the
Indo- Gangetic plain (rainbelt III). During the summer season this rainbelt fluctuates with
monsoon trough and gives rise to the variation in monsoon rainfall on intra- seasonal time
scale and in turn on interannual time scale. Particularly, the variation of the western part
of this rainbelt, i.e., west of 80°E is the prime contributor to the interannual variation.



Apart from these three rainbelt regions, there is a rain shadow region along the East Coast
of the peninsula. The variation of rainfall in this region also contributes significantly to
the interannual variation.

Fig. 1(a) shows the model-simulated climatology for 15 years (from 1979 to
1993). When compared with the observations the model simulation shows that rainbelt I
is weaker, rainbelt II is more intense and its maxima shifted northward, while rainbelt III
is also more intense at the head Bay of Bengal and shifted southward at both the ends.
The rain shadow region is not simulated on the land but it is eastward and on the sea.
Thus the model is successful in capturing almost all the important features of the
observation but with changed geographical location and changed intensity.

Fig.1 (c) shows the ANN corrected model climatology. It is difficult to find any
difference between observed climatology and corrected climatology. Therefore difference
figure was plotted. Fig. 1(d) is the difference between model and observed climatology
(model - observed) and fig. 1(e) is the difference between ANN corrected model
climatology and observed climatology (corrected - observed). We find that model shows
excess rainfall over most of the peninsula and along West Coast the difference is well
above 10 mm/day. The model also shows less rainfall over head Bay and northern and
eastern parts of the country. The ANN corrected rainfall has shown maximum difference
along Gujrat coast, but its magnitude is just above 1 mm/day, which is negligible when

- compared with deficiency in models. In other parts of the region the difference is below 1

mm/day. On the monthly scale also the ANN corrected climatology is very close to
observed climatology (fig. 2). These improvements seem to be dramatic but it is not
-really so. Because if we use the following formula at each grid point:

Corrected model value = (standardized model value) X (Standard deviation of
observed values) + Mean of observed values (14)

then the climatology and variance of corrected model output will be exactly matching
with observation. This formula has been used in some form while normalizing (putting
values between -1 and 1) the values for ANN correction and then denormalizing (getting
back the values from -1 to 1 to the actual values). Thus the actual comparison will be on
interannual and intra-seasonal time scales where the formula (14) has nothing to do with
sign of anomalies.

4.2 Interaannual variability

Grid point Comparison: The correlation coefficients () between model and observed values
for 17-year period (1979-1995) is shown in Fig. 3(a). Except for some regions over the
Arabian Sea and Bihar Plateau, where model shows some significant correlation, there is
practically no correlation and even some regions over Bay of Bengal are showing
significant negative correlation. While r between ANN corrected and observation (Fig.
3(c) shows that over almost all places correlation has improved linearly, i. e., where
model was showing significant positive correlation it has improved to greater than 0.8
and where model was showing significant negative correlation it is between 0.1 and 0.4.
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Nowhere correlation is negative. For categorical forecast Fig. 3(b) shows the Heidke Skill
Score (HSS) for model and Fig. 3(d) for ANN corrected. It can be observed that over
about half of the region model forecast is slightly better than random forecast and over
rest of the region it is even worse. It has slightly better skill in some parts of the Arabian
Sea, while ANN corrected is everywhere better than the random forecast except for some
parts of coastal Andhra and Orissa. Fig. 3(e) and (g) show the values of percentage of
correct categorical forecast (PC) for model and ANN corrected respectively. Almost
everywhere ANN corrected forecast is corrected more than 50% and many places over 70
to 80 % and even more, while the model forecast is either less than 50% correct or
slightly above. Fig. 3(f) and (h) show the values of Skill Score (SS) for model and
corrected values respectively. Except along some part of eastern region everywhere the
values of SS for GCM simulations are negative and even less than -10 along peninsula
and Bay of Bengal, while the values of SS are slightly lower than 0 in some places for
ANN corrected forecast. Thus from Fig. 3 we can easily see that on seasonal scale there
is a significant improvement in model forecast by ANN correction on the interannual
time scale.

On monthly scale, the above-discussed statistics are shown in Fig.4 to 7 and we
can find similar improvement on intra-seasonal time scale also. Over all we can conclude
that northern Gujrat, Rajasthan, western Madhya Pradesh, some parts of eastern states,
middle peninsula, and most parts of Arabian Sea are more predictable regions when
model prediction is corrected with ANN method. While tip of peninsula, southern Gujrat,
east Maharashtra, regions over Orissa and Andhra coast and most parts of Bay of Bengal
are comparatively less predictable.

Time series comparison: As already mentioned, the time series for whole region (WR) and
Indian land (IL) only were made for anomaly, skill score and spatial correlation. The
anomaly is shown in fig. 9 and 10. It is clear that on seasonal scale though there is an
improvement (correlation coefficient increased from -0.093 to 0.233 for IL and from
0.084 to 0.312 for WR) but still the correlation is not significant. On monthly scale
except for July there is a significant improvement with ANN correction when compared
with model. Fig. 11 shows the skill score and spatial anomaly correlation. It can be seen
in Fig. 11(a) and (b) that for ANN corrected values skill score is always positive and
having high values (close to 1) while in case of model it is either negative or close to 0.
Spatial anomaly correlation fig. 11(c) and (d) shows that except for the year 1990 not a
single year the model forecast is useful while ANN corrected forecast is useful in most of
the years.

Thus there is a significant improvement when model forecast is corrected by
ANN method.

4.3 Comparison for some individual Years (ENSO/ISMR relationship)
For evaluating the improvement of the ANN correction in GCM performance on
seasonal rainfall in individual years we have selected 4 years from the training -

contrasting years of 1982/1983 and 1987/1988. These years are associated with ENSO.
There are only 2 years in test set, 1994 and 1995. These years are also considered.
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Fig. 12 shows the model simulated rainfall, corrected rainfall and observed
rainfall for the year 1982. From the fig. 12f (observed rainfall anomaly), it is seen that
except some parts of Tamil Nadu, Karnataka and north India the rainfall anomaly is
negative. The model-simulated rainfall (fig. 12a), however, is not satisfactory. Like mean
rainfall simulation (fig. 1), the West Coast maxima is located to the north of its observed
position. The corresponding anomaly from the GCM output (fig. 12d) however shows
negative anomalies over most part of the country except some parts of western and
central India. The corrected model output (fig. 12b) has improved rainfall distribution
over the country, when compared with actual rainfall distribution (fig. 12¢). West Coast
maxima is very close to the observed position. In the corrected anomaly (fig. 12e), the
positive anomaly over north India is in accordance with the observation. However the
positive anomaly area is extended to larger region. In uncorrected case the positive
anomaly over north India was not seen instead there was negative anomaly. The
magnitude of negative anomaly over north- east India in ANN corrected has increased
and is closer to observed anomaly. Although the seasonal rainfall is deficient during
1982, this feature is not distributed uniformly over the entire country. If we see the
rainfall distribution in much smaller spatial scale, the rainfall is above normal over some
part of north India (fig. 12i). Below normal rainfall is observed over an east- west
oriented rainbelt from Maharashtra coast to Orissa coast. In rest of the country it is
normal. Here the above normal, normal and below normal rainfall are defined as in eqn.
(10). There is significant improvement in the ANN corrected output (fig 12h) compared
to the raw model output (fig. 12g), in the sense that above normal rainfall over north
India is well produced, in ANN corrected case where as it was not there in model case. A
small pocket of below normal rainfall over East Coast is also reported in corrected case.
Again like the anomaly (fig. 12¢), here also the above normal rainfall has larger spatial
extension.

Unlike 1982, in 1983 the observed rainfall (fig. 13c) and its anomaly (fig. 13f)
show well distributed rainfall over the country. Except the region of NE India and a small
pocket of southern India observed rainfall anomaly is positive. The worst performance of
GCM is seen for the year 1983. The rainfall anomaly simulated by the GCM for 1983
(fig. 13d) shows negative anomaly over entire India. In most of the GCM simulations
studied by Gadgil and Sajani (1998) it is seen that models have not captured the extensive
rainfall during 1983. This GCM also has not captured the extensive rainfall during 1983
and has simulated very little rainfall. However, the corrected anomaly simulated by the
GCM has shown tremendous improvement. It has captured almost satisfactorily the
negative anomaly over NE India, a small pocket of negative anomaly over southern India
and positive anomaly over the rest part of the country. Figure 13g, h and i show the area
of above normal, normal and below normal rainfall over different parts of the country as
simulated by model, ANN corrected and that from the observation. Although the spatial
distributions of above normal, normal and below normal rainfall are not matching in the
model output (fig. 13g) with observation (fig. 13i), a very significant improvement can be
seen in ANN corrected rainfall categories (fig. 13h).

Fig. 14 depicts the spatial distribution of actual, anomaly and different categories
for GCM, ANN corrected and observed rainfall of 1987. This year was the one of the
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severe drought years in recent time. From fig. 14f it can be seen that the observed rainfall
shows negative anomaly over entire country except NE India. From fig. 14d we can see
that model performance is good in the sense that most of the GCMs have simulated the
variability during 1987 and 1988. But the model has simulated positive anomaly over
most part of the peninsula, which is not the case for observation. This negative anomaly
is almost disappeared after ANN correction. The distribution of positive and negative
anomaly in ANN corrected (fig.14e) is very much identical to that of observed (fig. 14f).
While comparing the categorical forecast (fig. 14g, h and i) similar improvement can be
seen. The normal rainfall over peninsula in model simulation (fig.14g) became below
normal after correction (fig. 14h) and it is in accordance with the observation (fig. 14i).

Year 1988 was also a good monsoon rainfall like 1983. However the difference is
that in 1988 many GCMs well captured the rainfall distribution where in 1983 it was not
so. If we compare the model anomaly (fig. 15d) with observed anomaly (fig. 15f) there is
a large discrepancy in rainfall distribution over West Coast and southern India with a
large negative anomaly in model (fig. 15d) whereas observation shows positive anomaly
(fig. 15f). This feature of observed anomaly has clearly brought out in the ANN corrected
case (fig. 15e). Similarly the negative anomaly over some parts of north India as seen in
the observation, which was not simulated by GCM is also well produced in the ANN
corrected output. Similar improvements can also be seen for categorical forecast (fig.
15g, h and i).

So far we have discussed the performance on some years from training set. Now
the improvement of performance by ANN correction in the year 1994 and 1995 of the
test set will be the real validation of the correction technique. The most critical year is
1994 when the ENSO was very much similar to 1991 but 1994 was a good monsoon year
where as 1991 was a bad one. Most of the statistical models and GCMs have failed in the
prediction of rainfall anomaly for 1994. During this year except East Coast of India, some
parts of central India and NE India (fig. 16f), the rainfall anomaly is positive in the rest of
the country. This pattern of rainfall distribution is also seen in fig. 16c. Although the
rainfall is well simulated by the GCM (fig. 16a), scanty rainfall over Tamil Nadu and
Andhra Pradesh is not demonstrated. However, this feature has been brought out in
corrected output (fig. 16b). Of course this improvement is not reflected well in the
anomaly pattern (fig. 16d and e). But when we compare fig. 16d and 16e with fig. 16f we
clearly find that negative anomaly over northern India produced by the GCM is replaced
with positive anomaly after correction and positive anomaly over NE India is replaced
with negative one. These improvements are in accordance with the observation. Also the
categorical distribution has improved when we compare the uncorrected (fig. 16g) and
corrected (fig. 16h) output with observed (fig. 161). Above normal rainfall over NW and
north India, seen in the observation (fig. 16i) is clearly brought out in ANN corrected
(fig. 16h) where it was mostly below normal in GCM simulation (fig. 16g). The below
normal rainfall over some parts of east coast and adjoining Bay of Bengal as shown in
fig. 161 is also improved in corrected output, whereas this was not seen in GCM
simulation.
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During 1995, the model rainfall shows a large excess rainfall over West Coast
(fig. 17a). The West Coast maxima is very much extended. The same feature is also
reflected in model anomaly (fig. 17d). The observed anomaly during 1995 shows positive
and negative anomalies distributed uniformly over the country. In the corrected model
anomaly (fig. 17¢), the very extensive rainfall of West Coast has improved with reduction
in magnitude and well compared with observed anomaly (fig. 17f). In the categorical
distribution of rainfall (fig. 17 g, h and i) of course there is not much improvement in the
ANN corrected output (fig. 17h). Only the normal rainfall over central India starting from
Maharashtra, Gujrat Coast to Orissa Coast is reflected in fig. 17h. However the east- west
oriented above normal belt is not desirable in corrected output.

All the discussions above are mainly concentrated on Indian landmass. Similar
improvements are also noticed on oceanic regions with greater improvement in Arabian
Sea than in the Bay of Bengal. Thus we see that there is a significant improvement in the
model simulations when they are corrected with ANN method as far as spatial
distribution and intensity is concerned. The proposed corrections have very well captured
the teleconnection link between ENSO and ISMR in simulating the rainfall anomaly
distribution for the years 1982,1983,1987,1988. The recent observational studies of
Kripalani and Kulkarni (1997) and Krishna Kumar et. al. (1999) have indicated that the
ENSO- ISMR relationship may be weakening. But the performance of the ANN
corrected model output is not affected during 1990s and therefore we may conclude that
though there may be weakening in ENSO/ISMR relationship, the GCMs can still produce
good simulations with observed SST as boundary conditions. This may also imply that
the dominant SST forcing may not be from the central Pacific alone.

The improvements may be summarized in the following table:

Year Spatial Correlation with CMAP Spatial Anomaly correlation
with CMAP anomaly

Model ANN corrected | CMAP Climatology | Model ANN corrected

1982 0.72 0.95 0.95 -0.26 0.49

1983 0.71 0.97 0.93 -0.07 0.74

1987 0.66 0.97 0.91 0.21 0.87

1988 0.69 0.96 0.96 0.09 0.55

1994 0.75 0.94 0.94 -0.26 0.24

1995 0.55 0.96 0.92 -0.03 0.70

These values are shown for the whole region. We find that in terms of spatial distribution
of rainfall for every year discussed above the climatological forecast is better than model
forecast but ANN corrected model forecast is always either better or at par. When we
compare the spatial anomaly forecast we find that there is a very significant improvement
in simulating the anomalies after ANN correction and this is not so only in training set
years but also in test set years. But the improvement depends on the performance of
GCM itself.




4.4 Improvement in real time forecast:

The improvement in GCM forecast with observed SST when corrected with ANN
will be validated for the case for May anomaly persistence forecast for years 1998 to
2000. For this instead of taking observed SST as boundary conditions the anomaly in
SST in the month of May was persisted for the four monsoon months. We have used
ensemble method. The model was integrated with 5 different initial conditions. These
initial conditions were taken from the model dumps corresponding to last five years of
17-year integration of the same model with climatological SST. The model was
integrated from April to September. Here we have to keep in mind that neither the SST is
observed nor the initial conditions are real.

The model simulated rainfall, ANN corrected rainfall and CMAP rainfall for 1998
seasonal mean is shown in fig. 18a, b and ¢ respectively. There is a good agreement in
spatial distribution between ANN corrected and observation. When comparing the
anomalies in fig. 18d, e and f we find that model simulated negative anomalies
throughout the Indian land and Bay of Bengal except some positive anomalies were
present in some parts of Arabian Sea and northern and eastern states. However in
observations (fig. 18f) there were negative anomalies only in central India and Orissa and
head of the Bay of Bengal. The ANN corrected rainfall (fig. 18e) shows some
improvement in replacing the negative anomaly over southern peninsula, Bay of Bengal
and also intensifying the magnitude of anomalies along eastern states produced by the
model in association with observation. There is a significant improvement in categorical
forecast also (fig. 18g, h and 1).

For the year 1999 we again find the distribution of rainfall in ANN corrected (fig.
19b) is very much close to observation (fig.19¢c) than the GCM simulation (fig. 19a). The
model is showing positive anomalies almost everywhere (fig. 19d) except some regions
in NE India and a small pocket along the tip of peninsula. The observed anomalies (fig.
19f) are, however, negative over the entire region except some regions over Uttar
Pradesh, Bihar and NE India. The ANN correction (fig. 19¢) has shown some
improvements in the sense that the magnitude of positive anomalies were reduced along
West Coast, positive anomalies were replaced with negative ones along East Coast, Bay
of Bengal and western parts of the country and also the negative anomaly over the head
Bay and NE India is replaced by positive anomaly in accordance with observation. But
the correction has spoiled the simulation along the tip of peninsula where it has replaced
negative anomaly produced by model in a positive one. Though these improvements can
be seen in categorical distribution (fig. 19¢, h and i) when we compare the performance
between model and corrected one, but still the corrected one is not very much
encouraging if we compare with observation.

Fig. 20a and b shows the model and corrected forecast for year 2000, the CMAP
data for this year is not yet available. But we can compare figures 20c to 20f with India
Meteorology Department observation figure available on the Internet at the site
http://www.tropmet.ernet.in/~kolli/MOL/Monsoon/frameindex.html. The model has shown negative
anomalies throughout the peninsula and positive anomalies over rest of the India (fig.
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20c). The observations show positive anomaly along the peninsula, some parts of Uttar
Pradesh, Bihar and NE India while negative anomaly over rest of the India with strong
negative anomaly along western and central part. The ANN corrections have replaced
negative anomaly over peninsula as positive one and also strong positive anomalies along
western part of the country were replaced with small negative ones (fig. 20e). These
improvements were also reflected in categorical distribution (fig. 20f).

Thus we can easily obtain good improvement in the spatial distribution of
anomalies and categories when the model forecast is corrected with ANN technique. One
important improvement can be noticed in the categorical distribution that the difference
between observed and corrected category is not of 2 categories, i. €., never the excess was
forecasted as below neither below was forecasted as above, as it is observed in many
places for GCM forecast.

5. Discussions and Conclusion

The principal scientific basis of seasonal forecasting is founded on the premise
that lower-boundary forcing, which evolves on a slower time-scale than that of the
weather systems themselves, can give rise to significant predictability of atmospheric
events (Palmer and Anderson, 1994). These boundary conditions include sea surface
temperature (SST) apart from others like sea-ice cover and, land-surface temperature and
albedo, soil moisture and snow cover etc. The strongest evidence for long-term
predictability comes from the influence of persistent SST anomalies on the atmospheric
circulation, which in turn, induces seasonal climate anomalies. Based on these premises
there are two approaches for seasonal prediction- statistical and dynamical. Using
statistical methods, the relationship between regional atmospheric anomalies and pre-
season SST anomaly patterns are studied and where significant links are found, current
SST patterns are used to predict future atmospheric anomalies. The other approach is the
dynamical one using AGCMs or coupled ocean-atmosphere GCMs. The results obtained
from statistical methods are very encouraging and remain a target to be achieved by the
dynamical models. It is likely that the best forecast will be produced by an objective
combination of both methods (Carson, 1998).

The most challenging and, of course, a litmus test for any GCM is to simulate the
interannual variability of the summer monsoon (JJAS) rainfall over Indian region. While
comparing the performance of 32 GCMs for the period 1979-1988, Sperber and Palmer
(1996) showed that except for showing the enhanced precipitation in the year 1988 in
comparison to 1987, little or no consensus among GCM simulations exists with regard to
Indian monsoon rainfall. They further concluded that GCMs exhibit greater fidelity in
capturing the large-scale dynamical fluctuations than the regional-scale rainfall
variations. This paper deals with the most challenging issue of prediction of Indian
summer monsoon rainfall by combining the ANN technique with GCM. The novel idea
of this paper is inspired by the non-linear feature extraction capability of ANN
(Monahan, 2000) and the conclusion of Sperber and Palmer (1996) and therefore
dynamical parameters produced by the GCM were used to obtain the correction using
ANN technique. Our aim is not to demonstrate that the GCM used is the best one nor the




model produced dynamical parameters selected here for ANN model development are
optimal, but to demonstrate the potential of the proposed method. We have clearly
demonstrated the skill of the method and showed that the corrected GCM forecasts are
better, beyond reasonable doubt, than that of random forecasts and climatological
forecasts. The correction by this method is most effective in some parts of Arabian Sea
where the GCM's performance was also better. This implies that if the performance of the
GCM will be good then the proposed correction method will be best. The present paper is
focused not only on correcting the geographical errors in simulating the mean pattern of
Indian summer monsoon rainfall but also on the variability on intra-seasonal (monthly) to
interannual time scales.

When forced by observed SST as boundary conditions we find that there is a very
significant improvement in simulating the interannual variability of anomaly distribution.
Since the ANN network was obtained using monthly data sets, similar improvements are
also found on monthly scales. Thus we see that there is a significant improvement in the
model simulations when they are corrected with ANN method as far as spatial
distribution is concerned. The proposed corrections have very well captured the
teleconnection link between ENSO and ISMR in simulating the rainfall anomaly
distribution for the years 1982,1983,1987,1988. The recent observational studies of
Kripalani and Kulkarni (1997) and Krishna Kumar et. al. (1999) have shown the
weakening of ENSO- ISMR relationship. But it seems that the performance of ANN
corrected model output is not affected during 1990s. Therefore we may conclude that
although there may be weakening in ENSO/ISMR relationship, the GCMs when
combined objectively with some statistical model can still produce good simulations with
SST as boundary conditions. All these improvements are achieved for a single run of
GCM, which can be even more improved with multi- runs. For real time forecast with
persistence of May SST anomaly over the entire season, we also find some improvement.
What we understand that if the GCM can be run with a few initial conditions with May
SST anomaly persistence as boundary conditions for many summer seasons and if the
ANN will be trained on these simulations then we may get forecasts better than the
purely statistical model forecasts. Also the linear increase in correlation coefficient, as
seen in fig. 3 to 7, indicates that different ANN models can be developed for different
regions based on positive and negative correlation between model and observation.
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Figure 1. 15 year (from 1979 to 1993) climatology of summer monsoon
season (June to September) mean rainfall (a) as simulated by model (b) for
CMAP (observation) data and (c¢) for ANN corrected model output.
Difference in climatology (d) (model - CMAP) (e) (corrected - CMAP). All
these values are in mm day™.
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Figure 2. Difference in climatology (a) (model - CMAP) for June (b) (model
-CMAP) for July (¢) (corrected - CMAP) for June (d) (corrected - CMAP) for
July () (model - CMAP) for August (f) (model - CMAP) for September (g)
(corrected - CMAP) for August (h) (corrected - CMAP) for September. All
these values are in mm day ™.
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Figure 3. (a) Correlation coefficient (r) between model and CMAP (b) HSS for
model (c) r between corrected and CMAP (d) HSS for corrected (¢) PC for model
(f) SS for model (g) PC for corrected and (h) SS for corrected. All these values
are for seasonal mean rainfall and for 1979 to 1995 period.
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Figure 12. Spatial distribution of (a) actual model output (b) corrected model output
(c) actual CMAP (d) model anomaly (e) corrected anomaly (f) observed anomaly.
Values are in mm day™. Categorical spatial distribution. Dark shaded regions are
above normal, light shaded below normal and not shaded are normal. (f) for model (g)
for corrected and (h) for CMAP. All these values are for seasonal mean rainfall for
year 1982.
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Figure 13. Same as Fig. 12 for the year 1983.
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Figure 14. Same as Fig. 12 for the year 1987.
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Figure 15. Same as Fig. 12 for the year 1988.




Figure 16. Same as Fig. 12 for the year 1994.
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Figure 17. Same as Fig. 12 for the year 1995.
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Fig. 18 Spatial distribution of (a) actual model ensemble mean (b) corrected
model ensemble mean (c) actual CMAP. (d) model ensemble mean anomaly
(e) corrected ensemble mean anomaly (f) observed anomaly. Values are in mm
day™. (f) categorical spatial distribution of model ensemble mean. Dark shaded
regions are above normal, light shaded below normal and not shaded are
normal. (g) same as (f) for corrected ensemble mean and (h) same as (f) for
CMAP. All these values are for seasonal mean rainfall for year 1998.
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Fig. 19. Same as fig. 18 for year 1999.
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