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Summary

The recursive filter designed by Robert (1966) has been
investigated in detail. The filter is found to have a dual impact
on the wave on which it acts in the sense that it changes the
phase and amplitude of the wave unlike a nonrecursive filter
which only changes the wave amplitude. The dual naturc of
the filter’s effect is attributed primarily to its recursive nature.
Procedures [or choosing the correct value of the smoothing
clement of the [ilter for achieving some desired postliltration
results are also discussed.

1. Introduction

The recursive frequency filter devised by Robert
(1966) has been widely used by many researchers
for controlling the temporal oscillations of the
solutions arising during the time integration pro-
cedures of their numerical models. Asselin (1972)
has studied the implications of this frequency filter
using the leap-frog scheme in the integration
process. We intend to study the eflects of this filter
with the Adams-Bashforth scheme in a simple
advective equation as well as some intrinsic details
of this filter. The amplification factor for the
“Adams-Bashforth  scheme—Robert's filter”
combination should have contributions from the
linite difference scheme as well as from the filter.
By an analysis ol the filter we shall see how a
proper selection of the smoothing element of the

filter affects the achievement of some of the
preconceived postfiltered contributions of the
filter alone.

2. Filter’s Intrinsic Details
The [ilter as devised by Robert (1966) is:

p*(1) =
o)+ Flp(t+ AN+ o*(t—AND—2¢(1) (1)
where ¢ represents the unfiltered physical quan-
tity undergoing [ilter application, F is the
smoothing element of the filter, ¢* denotes the
physical quantity after filtering, 7 stands for time
and At for the temporal increment.

A recursive procedure is defined as a procedure
which uses itself in evaluating itself. The filter
defined in (1) is recursive as the evaluation of the
filtered value at time 7 needs the filtered value at
the earlier time step. The occurrence of the filtered
value viz ¢*(+— A1) on the RHS of eq. (1) makes
the filter recursive. Let R be the Response Func-
tion of the filter.

e*(1) = Ro(1) (2)
Equation (1) in conjunction with (2) yields:

Reo(1) =
p)+ Flp(t+ AN+ @*(t—AD)—2¢p(1) (3)
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Assume that ¢ represents a wave of unit
amplitude and angular frequency w.

o) = e (4)
2 N
where angular frequency @ :?n, T being the

period of the wave.
Substitution of (4) in (3) gives:
_ | Rcimr = .
e:w.‘+F(elw(f+£!) i R(p(f—Al) _Ee{(ur) (5)
where @*(t—A1), of RHS of (3), is replaced by
@(t—At) as per eq. (2).
Equation (5) implies:
Reim.' — eim1+F(eim(!+mJ 4 Reiw(d—ﬂ.rj__zciw!)
RB=1 +F(cimm + Re iru{\f_z}
R(l —Fe nudr) =]1—2F+ chm
R(l—FcoswAt+iFsinwAt) =
1 —2F+ FcosmAtl+ iFsinmAt
R(l + F*—2FcoswAl) =
(1—2F+ FcoswAt)
(I1—FcoswAl) + F*sinf*wAr +i{FsinwAl
(I—FcoswAt)— FsinwAt (1 —2F
+ FecoswAr)}
L.e.
1 —2F+2FcoswAt—Fcos2wAt
1+ FP—2FcoswAt
iZFZsinmAr(l—cos.:u.rflt)
14+ FF—2FcoswAt

R

(6)

Equation (6) shows that the filter’s response
function R is complex and is a function of angular
frequency (w) of the wave temporal grid size At
and the smoothing element F. As the angular
frequency w of a wave is related to its period 7 by

2zn { ;
0=, 50 the complex response function R is

implicitly a function of the period also. We again
express the period of the wave in terms of the
temporal increment Atr as T=nAt where the
multiplicity factor » will take different values for
different periods.

So, the functional dependence of the complex
response function R will-be on the smoothing
element F, the period of the wave T and the
multiplicity factor n, introduced earlier. For the
purposes of interpretation, a wave will be referred
to by the corresponding value of the multiplicity
factor n. Just as in spatial filters, in which a

particular wave’s wavelength is specified in terms
of its multiplicity to the grid length (e.g. 2 grid
wave, 3 grid wave etc.), a 2A¢ wave in this
temporal filter will be the wave whose period is
twice the temporal increment or temporal grid.
For the purposes of interpretation, the temporal
increment At will more or less be identified as
temporal grid and the waves will be referred to as
the waves with period twice the grid (2A ¢), thrice
the grid (3A¢) and so forth. Eq. (6) can be re-
expressed as:

R= Rrﬂu’ + iRr}m.rg = |R| eif) (?)

where R, is the real part of R; R,,,, is the
imaginary part of R, | R|is the positive square root
) 3
of (R, + R;m); and
tan ) = —&
real

Comparison of (6) and (7) gives:

Rrum’ =
| —2F+2FcoswAl—F cos2wmAl

|RI cosl) = w3 Fz_2FCOSWA{
and
i 2F(1— Af)sinwAt
Rllmug — I R1SII‘IU - ( cosw ) 1naw

| —F—2FcoswAt

IR| = {|l—4F+6F—4F +5F +
4P —8FP—4FY)coswAt—(4FP—8 F)
cos’wA 1}

(14 FP—2FcoswAf)™' (8a)
and
- (2F1(l icoswAz)sinwAt)
| + FF—2FcoswAt
(1—2F+ 2 FPPcoswAt—Frcos2wAtY

| + P—2FcoswAt
(8b)
Equation (2) in conjunction with eq. (7) yields:
@*(1) = Ro(1) = | R|e" p(1) 9)

and as ¢(r) is assumed to be a wave of unit
amplitude as

@(1) = e so eq. (9) becomes:
@*(0) = |R| @+ (10)
This equation represents the postfiltering

structure of an arbitrary wave of unit amplitude.
This equation shows that a) the amplitude of the
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wave has changed from one unit to | R| unitsand b)
the phase of the wave changes by 0. From this we
get the percentage change, [all or enhancement,
introduced by the [ilter in the amplitude of the
wave as (1—|R]) x 100.

From eq. (8a) and (8 b) we [ind that |R| =1
and tan0=0; i.e. |R| =1 and 0 = 0; whenever
F=0. This implication of (8 a) and (8 b) is correct
because according to the definition proposed by
Robert (1966) and given in eq. (1), the above
substitution viz I = 0 is tantamount to no [iltra-
tion, as eq. (1) with F = 0 becomes:

@* (1) = ¢ ().

2.1 Some Special Cases

|R| and 0 are the parameters defining the post-
filtering effects of the filter on a wave of unit
amplitude and given phase. We shall now see how
the eq. (8a) and (8 b) modify for some particular
preconceived postfiltering values of |R| and 0
thereby leading to the computations of the
appropriate values ol the smoothing clement F.
Filter’s contribution obtained by using any of
- these values of F will be the same as the one which
was used in deriving this particular value of /7.

Case |
Firstly we consider the effect ol the filter for any
arbitrary value of the smoothing element 7 on the
waves of angular [requency w satislying cosw A (
= |,

Now with cosmA r=1, |R| rom eq. (8a)
becomes:

| R =(1—4F+6F—4F + FY:(l +P—2F)"
=((1+FP—2F) (1 + F—2F)"

1.e.
|IR| =1

and from (8 b) we get
tan8 =0=>0=pa¥p=0,1 1, £2, ...

The number of different grid waves implied by
cosw At = | are computed as under.

coswAr=1

e B R N = LT, s
nAt

l.e.

nzl—Vm= 12,3525,
m

1.e.

I &1

2034

n = 11is the only physically acceptable value of the
multiplicity factor n. From this it can be concluded
that the amplitude of one grid wave will always be
invariant under this filter, for any value of
I except FF= 1, while its phase will change by an
integral multiple of nr. Value F = 1 is excluded as

n=1

; . 0
| R| becomes indeterminate 0 whenever F = | and
coswAr=1.

Case 2

Now, we consider those angular frequencies for
which the absolute value of the complex response
function vanishes for any arbitrary value of the
smoothing element F i.e. we will be looking for
those values of the multiplicity factor n for which
|R| =0 for some F.

From eq. (8a) we have:

|R|={1—4F+6F —4F +5F +
(45 —8F —4F)coswAt—(4FF—8F)

cossmA 1) (1 + F—2FcoswmAr)™

Now '
[R|=0
= (41 —8FYcos’w A1 —(4FF —8F —4 )
coswAI—(1 —4F+ 6P —4F + 5 =0 (10)
This is a quadratic equation in cosw At and 1is
solution is:
coswAl=4F—8F —4F

+ {16 (F—1)*} (2 {4FF—8F}))™

or

2
coswAt = cos
m
= {4FP—8FP —4F + 4F(F—1)*}
(8(1—2F) FF)™! (11)
In this particular case we will consider two sub-

cases viz. one for each of + sign appearing in the
numerator ol eq. (11).

Subcase (i)
With positive sign eq. (11) yields:
coswAt=(4FF —8F —4F +4F(F—1)")
BF—I16F)
Lie.

coswAt=(1—4F+5FP)@4F—2F)"

Hl
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Subcase (ii)
With negative sign eq. (11) becomes:

coswAt=(4F—8F —4F —4F(F—1)%) .
BFP—16F)""

cosmAt = %(l + A F

::>F2—2Fcos‘wA'r+ 1‘=0

i.e. the choice of a negative sign reduces | R| to the
, : .t G ;
indeterminate form i which is unphysical and
unacceptable. We find that only a positive sign
leads to physically acceptable conclusions. On
retaining only the positive sign cq. (11) reduces Lo
the form.

27
cosw At =cos—
n

=(1—4F+5F)(@4FP—2F " (12)

Equation (12) can be solved either for n for
some given value of F or for Ffor some given value
of n. Former solution will give us that value of the
smoothing element F for which the corresponding
filter will completely filter that grid wave which
was used in computing this value of F. Latter
solution will give us the grid waves which will be
completely filtered by the filter having a par-
ticularly selected value of F. Assume that we wish
to evaluate the value of the smoothing element F
for which the corresponding filter will filter the
waves of twice-grid period, i.e. we intend to find
that value of F for which the wave of period

T=2Atwill have | R| = 0. Now for the waves of

this period

cos(wAt) = cos (z?nz& r)

27
ZCOb(LQ;A!)

=CO5T
=—1

From subcase (i) we get:
—1=(5F—4F+1)(2FQ2F—1)) '
SFPP—4F+142FQF—1)=0
(3F—1y =0 ie. F='%

i.e. frequency filter with F= % will give |[R| =0
for 2-grid waves. Conversely it can be seen which

grid waves are implied by eq. (12) when a filter
with F = Y is used.

coswAt=[(S5FP—4F+1)4FP—2F"]p-u
(A3 -y
=15 5 =

7t
oAl=—=gn=n=2
n

(38 ]

2-grid waves will be completely filtered by a filter
with F= ! while earlier we found that [or
filtering 2-grid waves, the filter should have F
= Y4. For filtering thrice-grid (7= 3 A1) period
waves, the smoothing element F becomes complex

; 54i./3 ;
and it works out to be £ = ;]Ifi In this case

(3A1), we find two values of F giving the same
effect. F has two values primarily because the
complex roots of a quadratic equation ol rcal
coefficients always coexist as a conjugate pair.

Case 3

In this case, we intend to find those valuces of the
smoothing clement F for which the absolute value
of the complex response functions, | R|, as defined
in (8 a), never exceeds 1, i.e. we will find those F for
which |R| <1 for a wave of given multiplicity
factor n.

Equation (8a) in conjunction with the con-
dition |R| < | yiclds:

[—4F+6FP—4F +5F +(4F—8F—4F
coswA(— (417 —8 1) coswA i)}
<14+ F—2FcoswAt

This inquality on simplification leads to the
following inequality.

i FF+1
8 F*(F 1)( o

—coswAI) <0 (13)

Ineq. (13)termcosw A (| = cosi—f is known
as we are looking for those values of /7 which
| R| < | forawave of given n. We shall see how this
inequality leads to the selection of those values of
F which are appropriate for effecting |R| < 1 for
some particular grid wave. Firstly we consider 2-
orid waves.
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For n = 2 the inequality of eq. (13) becomes
8F(F—1)(F+1) <0
or

F(F—1) < 0as (F+ 1)? being a squared quantity
is always positive. i.e. F must be in the range
0<F<1 for not allowing the postfiltering
amplitude of 2-grid waves to exceed unity.

Secondly we consider one grid waves and for
n = 1 inequality of eq. (13) reduces to an equality
(0 = 0) thereby implying that for one grid waves
|R| =1 i.e. the amplitude of one grid waves will
always be invariant under any [ilter. This supports
the conclusion drawn earlier from case 1 wherein it
was shown that |R| = | for one grid waves for a
(requency filter of any F. However [or an arbitrary
grid wave, Fmust be chosen in conformity with the
inequality given in eq. (13).

Case 4

Under this case we study the behavior of the filter
when the smoothing clement /= I. Substitution
of F=1 in eq. (8a) gives (|R])y-, =1 ie. the

amplitudes of waves of any angular {requency will
be invariant under this filter. The impact of this
filter on the phase of an arbitrary wave is obtained
from the transformation ol eq. (8 b) under /"= 1.

L&,

tan 0 = 2P (1—cosmAl)sinw At
B |+ FP—2FcoswAt

(] —7.F 2F3coscuA!———F2c052wAr)_"

|+ FF—2FcoswA i
(tan(),—, =tanwA ¢
i.e.
D=wAt

Here 0 is a measure of the phase change introduced
by the filter. Now
2 _2n

21
O=wAt=—At=—-At
s ' nai 7

lLe.

=0
I

So, the complex response function, for F = 1
becomes
12z

R=|R|e’=¢" as|R|=1

This leads to the conclusion that the amplitude
of wave of any multiplicity factor n will be
invariant under this filter though its phase will

2 ;
change by an amount —, i.e. the filter with F = |
n

changes only the phase of waves, leaving their
amplitudes unaffected.

Case 5

Contrary to the case 3 wherein we evaluated those
values of the smoothing (filter) element F [or
which the filter damps all waves, we shall now see
for what values of F the filter amplifies the
amplitudes of all waves i.e. for what values of F,
|R| = 1 for all w. Equation (8a) in conjunction
with |R| = 1 gives an inequality for an arbitrary n
as

FF+1 2n
“sppge | > 4
7 cos ”) 0 (14)

Sﬁuu—n(

In particular this inequality reduces to equality

(0 = 0) for one grid waves (cos 2n_:rr =— I) and to

the form F(F—1) = 0 for 2-grid waves (ccn:r.—z;?T

=—1; F(F—1) > 0 ) implies that F must in the

range 0 > F > | for the filter to have amplification
elfect on the amplitudes of 2-grid waves. However

for an arbitrary grid wave, F must be chosen in

accordance to the mequality given in eq. (14).

3. Filter with the Adams-Bashforth Scheme

We shall now study the effect of this filter when
used in conjunction with the Adams-Bashforth
finite different scheme in a simple advective equa-
tion of the form

d i
ﬁzlmrp

di (13)

which by using the Adams-Bashforth difference
scheme, can be written as

1)
Py =P+ 7(3 ‘Pf—(P$f—a:) (16)
Scheme has a computational mode besides a
physical mode as it is a 3-level scheme. The scheme
tends to damp the computational mode and
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amplify the physu:al mode. In eq. (16) smoother
function at t— A is obtained from eq. (1) using
values at t—2A¢, t—At and (. We now define
“Amplification Factor X” by expression

Xo, (17)

(T

For simplicity, we shall henceforth assume the
temporal grid At to be of unit time 1.e. At = 1.
Combining eq. (1), (16) and (17) we find that

(F+ 1)+ i23(3—f)

2

2 i
{(F-— 1)2—52- G— B —iw(F— 1)}
+ 5 (18)

’Yl,l =

The negative sign associated with the radicand
corresponds to the computational mode. The
amplification factor X represents the response of
the “filter-difference scheme” combination on a
wave of given frequency. Substitution of F =0 in
eq. (18) leads to

ot

=3 +T_ 2(1_9_;)“]_ :w) (19)
viz. the amplification factor for the Adams-
Bashforth scheme alone as F = 0 implies no filter
usage. The amplification factor X, as defined in eq.
(18), will have a contribution from the filter as well
as from the Adams-Bashforth scheme. Filter’s
contribution is represented by its response func-
tion, eq. (6), and that of scheme's is represented by
its amplification factor given in eq. (19). During a
time integration procedure, the clfect of [ilter-
scheme combination goes on accumulating and
what we get after n steps ol integration is the
cumulative effect of this combination. We shall
consider the cumulative effect of this frequency
filter scheme combination for one particular case
viz. for F = 3. The choice of this particular value
of F is motivated by the wish for simplicity in eq.
(18). For F = 3 we get from eq. (18)

"‘3]~2+0?07f(1+4w) + 1}
+0.707i {(1 + 4w)—1}4

and the effect after n time-steps is given as X" i.e.

X(J)n = |‘¥(3}|” emH (20)

where
1 XO| = [4+ (1 +40?)! +

+2.828{(1 +4wh)t+ 1} (20 a)
tanf = {(1 + 4} —1}}
[2.828 + {(1 +4?)' + 1} (20D)

Contributions of the filter and the difference
scheme to the cumulative results of eq. (20) will
also be cumulative. The cumulative contribution
of the frequency filter is R" where R is obtained
from eq. (8a), (8 b) after substituting F = 3.

I.C.

R = IRI" einﬂ (21)
where
|R| = (85— 126 cosw + 45cos’ w)
(5—3cosw) ' (21a)
and
il — 9sinw (1 —cosw)
5—3cosw
2 +9cosw—9costw \
( 5—3cosw ) @1b)

and the cumulative effect arising rom the Adams-
Bashforth scheme is X", with X, defined as in eq.

(19).
X-:: - lX\‘{'lﬂ eim‘? (22)

where

1 ) 8lw*  7w?\!
|X_\.(_|=Z{4+9w +4(1 = ) +
Slw* 7w?\
+5.656{(1 + 5 2 ) +
9] ! 8lwt 70\
““T} +8.484{(I+ = 2)—

(222)

and

8lw* Tw?\} 9w?\*
2.12 L
H«Hl6 2)x+4)

8lw* Tw 9w\’
41 . o e il
1 4+((l+ 16 7 ) + 1 4 )

The amplification factor for the case when leap

tanf =
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frog scheme is used with the [requency [ilter in the
frequency integration process is given as

X=F+iw+ ((F— 1) —w?)! (23)

The leap [rog scheme, being a 3-level scheme,
has a computational mode besides the physical
mode and the negative sign associated with the
radicand corresponds to the computational mode.
The cumulative effect of n steps of temporal
integration is given by X" where:

Y= X| e (23 a)

In this case X will take two dillerent forms

depending on the sign of the quantity (F—1)’—
w’. When this quantity is positive we get

X0Hm = | X gint) (24)
where
| XV =Q_QF—2F+14+2F
(FP—w*—2F+ 1)})! (24 a)
and
tan 0" = o (F+ (FF—w®*—2F+ 1))~  (24b)
and when (F—1)’— w? is negative we get
Xt — [X(-)|n ginf ) (25)
where
X =Qow+2F—1+2w
(0’ —F + 2F—1)})* (25a)
and
tan0' V= (w+ (@ —F +2F—1))F ' (25b)

Like in the Adams-Bashforth scheme case, the
amplification factor for the leap frog scheme is
obtained by substituting F'= 0 in eq. (23) and is
given as

X r=iw+(l—o)! (26)

Fig. 1a gives the profiles of |R| for certain
values of the filter parameter F with At =1 and
Table 1 shows the maximum postfiltering
amplitude obtained by applying filter on waves in
the frequency range (0.1, 1.2) for 16 different
combinations of (At, F) with At =1, %, %A, %
and F = Y, Y, ', Y. Itisseen [rom Table | that
the maximum postfiltering amplitude 1) increases
as At decreases for lixed F¥ and 2) increases as F
decreases for fixed Ar. Fig. 1b shows the phase
changes (in degrees) introduced by the application
of filter on waves in the frequency range (0.1, 1.2)
for some F with At = 1. However Table 2 shows
the maximum phase changes introduced by the
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Fig. 1. a) Profiles of | R| vs. w (in degrees) lor certain values of
the combination (At, F). b) Proliles of phase changes (in
degrees) introduced by the application of filter alone for
certain values of (A1, F) )

Table |. Numerical Values of | R|, for Different Combinations
of F(%, Y, %4, ) and At(l, 74, ¥, %) over a Frequency
Range of (0.1, 1.2)

F Ar Maximum- ~At- F Maximum
amplitude amplitude
Wl ().9985 | Y 0.9985
Ya o 0.9991 Yo 0.9966
Y2 0.9996 Y 09754
Ve 0.9999 Y 0.9901
Yo 1 0.9966 Yo Y 09991
Ya  0.9981 Ve 0.9981
Y. 0.9991 Y 0.9972
Ya 0.9997 YA 0.9944
Vi o 0.9754 Y2 Y 0.9996
Ya  0.9972 Ve 0.9991
Y2 0.9987 o 0.9982
e 0.9996 Y2 0.9975
Yool 0.9901 Vo e 0.9999
Yo 0.9944 Ya 0.9997
Y. 0.9975 i 0.9996
Yo 0.9993 Yo 0.9993
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Table 2. Numerical Values of the Phase Changes (in degrees)
Introduced by the Frequency Filter for Different Combinations
of F(%, Y4, %, ¥%)and At(l, %, %, ¥) over a Frequency
Range of (0.1, 1.2)

F At Maximum phase A¢ F  Maximum phase
change change
(degrees) (degrees)

w1 1.37 I Vs 1.37

Y 0.68 Ve o T.16
oo 023 Yi 1488
0.3 Yo 39001

% il 7.16 Yoo Y& 0.68

Yo 3.58 Yo 3.58
i 1.21 Yo 1.38
Vo o 0.17 Yo 21.95
hol 14.88 o Ve 023
Yo 138 Yoo 121
2 2.62 A0 262
Va 037 Yva  8.70
Yool 39.11 Ya W 0.03
% 2195 Yo OLIT
Vo 870 i 0.37
Y 1.39 7 1.39

application of this filter on waves in the [requency
range (0.1, 1.2) for the aforementioned 16 com-
binations of Fand A ¢. It implies from Table 2 that
the maximum phase change introduced by this
filter 1) decreases as A t decreases for some fixed F
and 2) decreases as F decrcases [or some [ixed A 1.
On combining these implications ol the Table |
and Table 2 it could be said that | R| increases
while 0 decreases [or R = | R| e as 1) A 1 decrcases
with fixed F and 2) F decreases with lixed A .

Fig. 2a shows profiles of the size of amplifica-
tion factor, | X[, for the Adams-Bashflorth [linite
difference scheme against [requency for physical
and computational modes for four different com-
binations of (A¢, F). The ligure shows that this
scheme amplifies the physical mode and damps the
computational mode. Phase changes ellected by
the application of the Adams-Bashforth scheme in
the physical and computational modes for waves
in the frequency range (0.1, 1.2) are shown in
degrees in Fig. 2b. Fig. 2b shows that the
[requency range (0.1, 1.2) can be considered as a
combination of two subranges such that the phase
changes introduced in computational mode are
more than that in the physical mode in the lower
[requency subrange while phase changes are
opposite in the higher frequency subrange. Figs.
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Fig. 2. a) Profiles of amplification factor, | X|, lor the Adams-
Bashlorth Mnite dilTerence scheme versus requency lor some
vitlues ol (A, £). Solid (dashed) lines correspond to the
physical (computational) mode. b) Profiles of the phase
changes (in degrees) introduced by the Adams-Bashflorth
scheme in the physical and computational modes versus
requency lor some values ol (At 1)

3a and 3b show the size of the amplification
factor, | X| for, and the phase changes introduced
by, the leap frog finite difference scheme against
frequency for physical and computational modes
for four different values of the combination
(At, F), respectively.

Simple advective eq. (15) was integrated for 10
time steps using the Adams-Bashlorth [inite dif-
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Fig. 3. a) Same as 2a except for leap [rog finite difference
scheme. b) Same as 2 b except for leap [rog scheme

ference scheme with the frequency filter for 16
different possible combinations of the parameters
(At, F)from F= %, Y%, %, Y2and At = 1, %, Y,
Y% and for waves in the frequency range (0.1, 1.2).
Maximum amplitude and the maximum phase
changes introduced by the Adams-Bashforth
scheme filter combination, after 10 steps, are
shown in Tables 3 and 4, respectively. From Table
3 it is found the maximum amplitude or rather

Table 3. Numerical Values of the Maximum Amplitude, | X|, for !
the Adams-Bashforth Scheme with Filter, Used over 10 Time |

Steps for Different Combinations of F (%, V. %, ¥)and At ¢

(1. %, %, ¥) over a Frequency Range of (0.1, 1.2)

F Ar Maximum Ar F  Maximum
amplitude amplitude
o 1 350.24 1 Ya  350.24
Yo 2935 Ya 31637
Ya 2.40 s 29205
Ya 1.03 Y2 23991
Va 1 316.37 Yo Wi 29.35
Ya 31.99 Ya 31.99
Ya 3.00 i 33.09
Vs 1.05 Va 33.45
Yo 1 292,05 i 2.40
Yo 33.09 Vs 3.00
Y 3.45 Y 3.45
Ya 1.07 Ya 4.37
a1 23991 Vo Ya 1.03
Yo o 3345 Vs 1.05
Ya 4.37 s 1.07
Ya 1.14 b 1.14

cumulative amplification decreases as At de-
creases for constant F. For the case when F
varies with constant As we find the cumulative
amplification increases as F decreases for At =1
and it decreases as F decreases for other fixed A ¢.
It is not possible to draw similar conclusions
regarding the variations ol the cumulative max-
imum phase changes w.r.t. F and A¢ [rom the
results obtained and given in Table 4 except for the
case when F varies with constant A ¢t = Y. In this
particular case it is found that cumulative max-
imum phase changes decreases as F decreases. It
could be concluded from the variations of
cumulative amplification w.r.t. F and At from
Table 3 that F and At should have least possible
values for controlling the wave’s cumulative
amplification during the integration procedure.
From Table 3 we find that maximum amplitude
found after 10 steps of integration is least viz. 1.03
when F and At have lowest values, % and Y,
respectively.

4. Stability Considerations

In this section we shall see stability aspects of the
amplification factors, to be obtained, when semi-
implicit and leap-frog finite difTerence schemes are
used with the frequency filter in the time in-
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Table 4. Numerical Values of the Maxinum Phase Changes (in
degrees) Introduced by the Successive Use of the Adams-
Bashforth Scheme with Filter Over 10 Time Steps for Different
Combinations of F(Y%. Y, ¥, Y)and A (1. Y. 5, Y)over a
Frequency Range of (0.1, 1.2)

F Ar Maximum phase  Ar F Maximum phase
change change
(degrees) (degrees)

Yo I 32219 ! Yo 32219

Yo 341.23 Ya 32317
Y2 322.19 Yy 32236
Yo 179.77 Ve 316.13
Ya 1 32317 Yao Yo 34123
Voo 34121 Ya 34121
Y 35891 Yo 339.46
Vs 181.08 Y 331.17
Yo 1 32236 Ya W& 322.19
Y4 339.46 Ya 35891
Y2 356.11 Yi 356.11
Va 182.08 Y: 34572
a ol 316,13 Yoo W 17977
Yo 33117 Ya 181.08
Y 34572 Vi 182,08
Ya  184.08 Ya 184.08

tegration of the simple advective equation (15).
Following Kurihara [1965] eq. (15) can be express-

ed in Ninite difference form as

Pryar— ‘P_f A
2A1

(‘PHA: T '-'P?—m) (,.)7)
—72 Z

Now following the procedure adopted in the
case of the Adams-Bashflorth scheme we get the
amplification lactor for this case as

=im,p,+1(v—wmn,

_ FrioA1
Cl—i(w—w, )AL
3 (F—D)(F—1 + 20w, AP) + (1—2 o Ar)
. l—i(w—w,)Al

(28)

Here positive sign associated with the radicand
corresponds to the physical mode while negative
sign corresponds to the computational mode.

Case w, =0 corresponds to the semiimplicit
scheme. Thus substitution of w, =0 in eq. (28)

leads to the amplification factor for the semi- |
implificit scheme f[ilter combination as

I +imAt
1+ AR
[FE{l+ o’ AP+ P—2F(1+ AP} (9

X

For stability considerations of this amplifica-
tion factor we shall confine ourselves to the |
physical mode only (positive sign). This X will
have two different forms depending on the sign of
the value of the expression | + @ Ar* + FF—2F(
+ w?Ar?). When it is positive we get: w4+ 0* >0
from [X]< 1, which is always true. The semi-
implicit scheme filter combination is stable when-
ever 1 +w’Ar + F* > 2F(1 + w*A ). For the case
when 1 +w*AF + FF<2F(1 + w*Af?) we get

_ 1 +iwAt
1+ 0’AP
[F+{2F() + 0’ AP —1—o*AP—F}]  (292) |

In this case | X| < | leads to an inequality F< 1.
For this case, we [ind that semiimplicit scheme
with filter is stable whenever FF'< 1. As a corollary
of this we find that semiimplicit scheme is always
stable as substitution of F=0, a value well in
conformity with /< 1, implies exclusion of filter
[rom the scheme [ilter combination.

Case » = m, corresponds to the leap-frog
scheme. Substitution of @ = m, in ¢q. (28) gives
the amplification factor for the leap-frog scheme
[ilter combination as |

X=F+1wAl+ |
{(F—1)(F—1+20®AP) + (1—21*)(.92;5?2}'é (30) ;

For stability aspects we again consider X for |
two different situations viz. when the expression |
under the radicand sign is either positive or |
negative. When it is positive we [ind that | X| <1 |
leads to the inequality w?A 2 > 0, which is always |
true. Thus for this particular case we find that the .
leap-frog scheme [ilter combination is always
stable. For the case when this expression is |
negative we find that | X| < 1 leads to an inequality |

. 5 .
| —F\? i |

! — 31
wAt é( s F) (31) |
This is the inequality which must be satisfied by |
Fand At for any w to make the leap-{rog scheme

filter combination stable for this case. This equa- |
tion implies that the time step for the leap-frog =

:
X o
LR L o e ol 19
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Table 5. Numerical Values of the Ma.;':'mum‘ Allowable Time
Step for Admitting same Range of Frequencies in the Leéap-
Frog Scheme Filter Combination as in Leap-Frog Scheme

Alone of Time Step At for Different Values of F and At

F At Maximum allowable time step
a 1 0.882
Ya 0.661
i 0.441
VY 0.221
Ve 1 0775 e
Ya 0.581
% 0.387
Va 0.194
e 1 0.707
Y 0.530
Ya 0.354
Ya 0.177
Y 1 0.577
Ya 0.433
Vi 0.288
Ya 0.144

scheme filter combination, \fith filter element F,

must be reduced to _i) times A if we wish

to admit the same range of frequencies in the
scheme-filter combination as in the leap-frog

* scheme alone, having temporal ‘grid-A¢, jn the

— &
stable domain of X. Time step Af(: r3 !F) thus
obtained is the maximum allowable time step for
making the leap-frog scheme filter combination
stable. Table 5 gives values for the maximum
allowable time steps for 16 different combinations
of Fand At
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