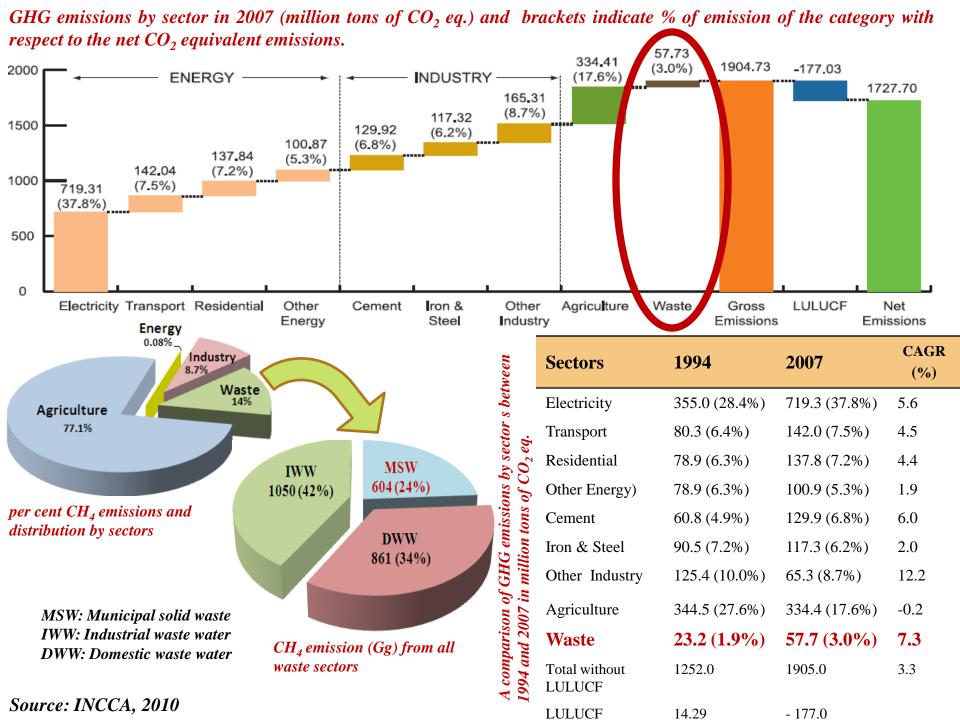
Methane Emissions from Landfills


Chhemendra Sharma

Principal Scientist
Radio & Atmospheric Sciences Division
CSIR-National Physical laboratory
New Delhi – 110012

Email: csharma@nplindia.org

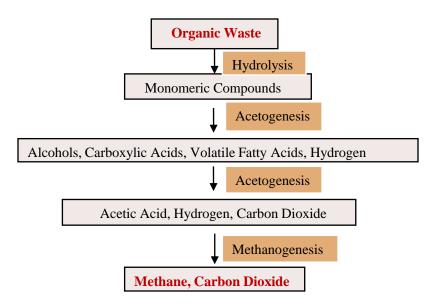
Background:

- ✓ Landfill is the site for the disposal of waste materials by burial and it is oldest method for waste management.
- ✓ Landfills gas (LFG) is produced in landfills due to the anaerobic digestion by microbes on any organic matter. Major constituents of LFG are: Methane (45 − 60%), Carbon Dioxide (40 − 50 %), Nitrous oxide (2 − 5%), Oxygen (0.1 1.0%), Ammonia (0.1 1.0%), Hydrogen (0 0.2%) and Volatile organic compounds (VOCs)
- ✓ It is estimated that world-wide CH_4 generation from landfills is about 10% ($\sim 36Tg$) of all anthropogenic sources (USEPA-2006).

Process of CH₄ Generation:

$$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$$
 (1)

Organic waste

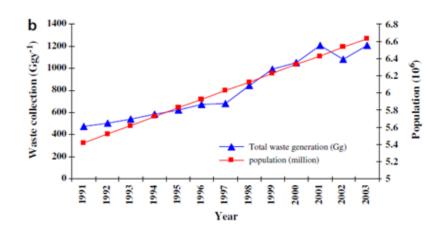

Methanogenesis

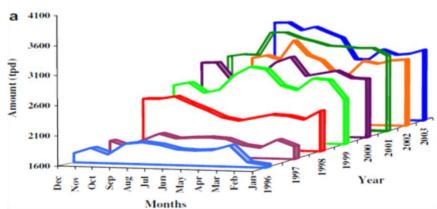
$$CH_3COOH \longrightarrow CH_4 + CO$$
 (2)

$$CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$$
 (3)

Simplified molecular formula is that

$$C_6H_{10}O_4 + 1.5 H_2O = 3.25 CH_4 + 2.75 CO_2$$




Major degradative steps during the anaerobic decomposition phase

Scenario of municipal solid waste management in four Indian mega cities

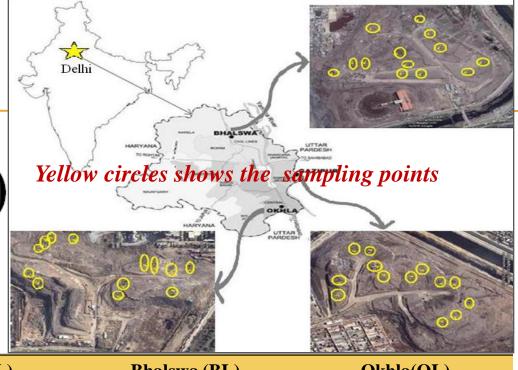
	Year	Mega-cities			
Parameter		Chennai	Delhi	Kolkata	Mumbai
Area (km2)		174.0	148.4	187.33	437.7I
Population (million)	2001	6.56	12.87	13.2	16.43
Waste generation (kg	1994	0.66	0.48	0.32	0.44
/capita/d)	1999	0.61	I.I	0.55	0.52
Garbage pressure (tons /km²)	1999	17.529	4.042	16.548	13.708
Waste collection (Gg per day)	1999	3.124	5.327	3.692	6
	2009	3.036	5.922	2.653	5.32
Mode of disposal (%)	Landfilling	100	93	8o	91
ivioue of disposal (%)	Composting	-	7	20	9

Fig. (a) Variation in the daily MSW collection in different months from 1996–2003 in Chennai; (b) increase in MSW and population growth in Chennai. (Source: Jha et. al., Chemosphere 2008)

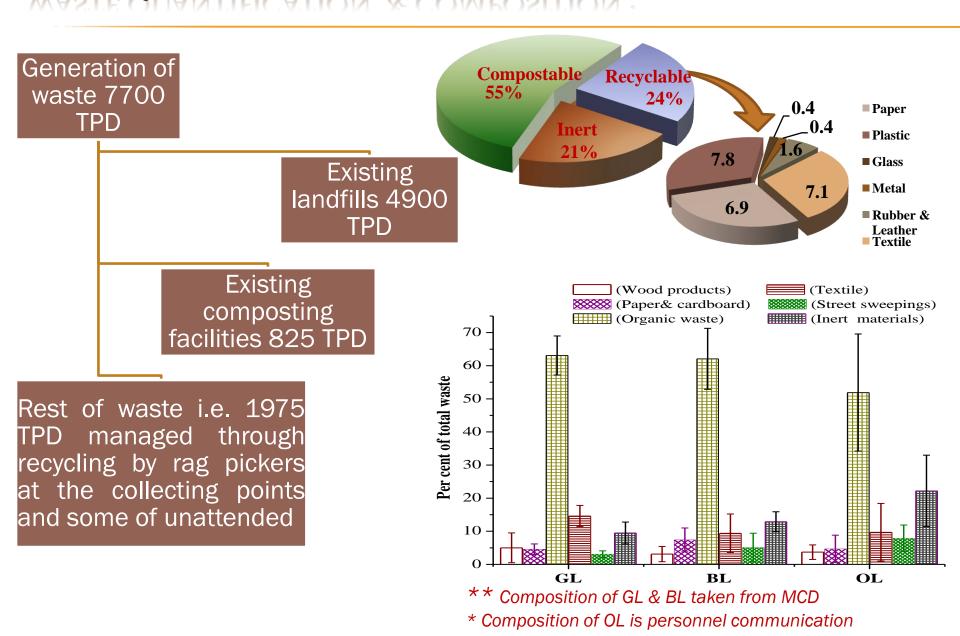
LANDFILL SITES IN DELHI

Ghazipur landfill (GL)

Okhla landfill (OL)


Focus: to reduce uncertainties in CH₄ emission estimations

Bhalswa landfill (BL)

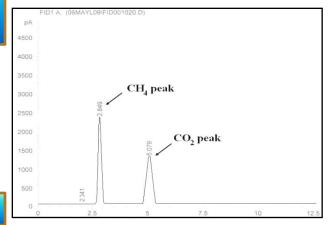

LANDFILL SITES IN DELHI

 $\left(egin{array}{c} ext{Focus: to reduce uncertainties in} \ ext{CH}_4 \ ext{emission estimations} \end{array}
ight)$

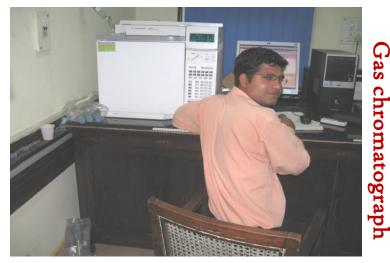
	Characteristics	Ghazipur (GL)	Bhalswa (BL)	Okhla(OL)	
SII	Location	28° 37' 22.4" N, 77° 19' 25.7" E	28 ^o 44'27.16" N, 77 ^o 9'27.92" E	28 ^o 30'42" N, 77 ^o 16' 59" E	
qfi	Starting year	1984	1992	1996	
lan	Area (Ha)	29.62	26.22	16.89	
is	Average height (m)	25.5 -30.5	18	27-40	
Delhi's landfills	Dumping quantity (TPD)	2200	1500	1200	
of	Waste management facility	Daily spreading and compaction	Basic systems, irregular leveling and compaction	Regular covering with C & D waste and compaction	
Salient features	LFG collection system	No gas collection system and no composting plant	No gas collection system but composting plant	Currently not operational, only composting plant	
lien	Type of waste	Household, animal waste from	Household, vegetable	Mainly household with	
Sal		poultry, fish market &	market, C& D waste	C&D waste	
		slaughter house			

WASTE QUANTIFICATION & COMPOSITION:

SAMPLING & ANALYSIS


Thermometer for monitoring box temperature

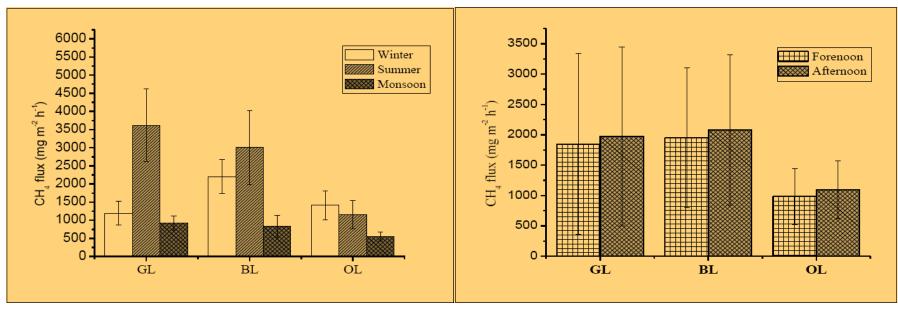
DC fan for homogeneous mixture


Perspex box

Water column for isolation

Sampling with syringe

Chromatogram for CH₄ by GC

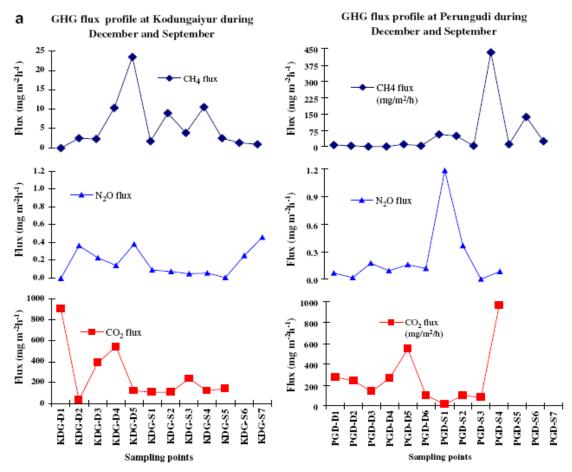


Capillary
Column
Data System
or Recorder

Carrier Gas
Supply

Schematic of a Gas Chromatography

METHANE FLUX ESTIMATION


Seasonal variations in CH₄ emission flux

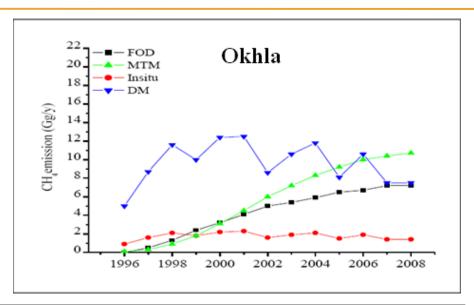
Variation in forenoon & afternoon CH₄ emission flux

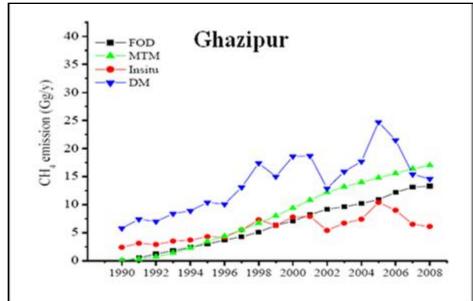
Seasonal & average CH₄ emission flux values for Delhi's landfills

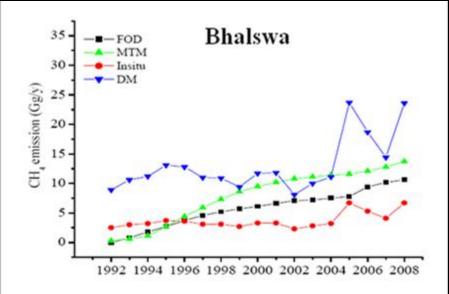
Londfilla	Seasonal CH ₄ emission fluxes (mg m ⁻² h ⁻¹)				
Landfills –	Winter	Summer	Monsoon	Average flux	
GL	1197±325	3617±994	919±199	1911±506	
\mathbf{BL}	2201±472	3006 ± 1021	834±294	2014±596	
\mathbf{OL}	1411±404	1154±394	557±123	1041 ± 307	

VARIATIONS IN EMISSION FLUXES IN CHENNAI LANDFILLS

PGD = Perungudi, KDG = Kodungaiyur, D = December, S = September [Source: A.K. Jha et al. / Chemosphere 71 (2008) 750–758]


 $CH_4\,EFs$ & estimations for Delhi's Landfills and its comparison with earlier reported estimations


	Reported CH ₄ emission		in-situ m ethod	
Landfills	Methodology/ Reference	Estimate (Gg y ⁻¹	CH ₄ EF (g/ kg of waste)	CH₄ emission Gg)
Ghazipur			9.7±2.6	4.6±1.2
Bhalswa	In-situ/ Sahu et al., (2000)	2.4	5.5±1.6	4.2±1.3
Okhla	In-situ/ Kumar et al., (2004)	1.78	5.5±1.7	1.4±0.4
Total CH ₄ estimations				10.2±2.9


TIME SERIES COMPARISON BY USING DIFFERENT METHODOLOGIES

Methodologies Used

- 1. IPCC 1996 default method (DM)
- 2. IPCC First order decay (FOD-IPCC, 2006)
- 3. Modified triangular method (MTM)
- 4. In-situ CH₄ Measurement (In-situ)

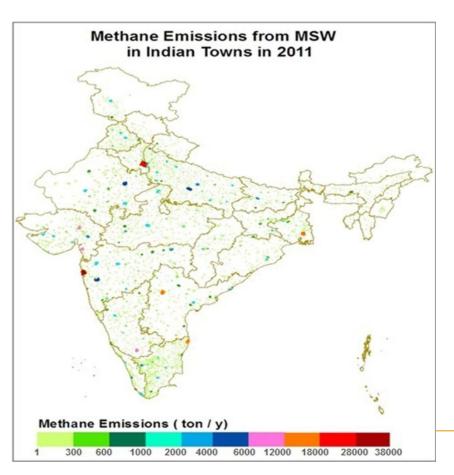
MAIN FINDINGS OF DELHI'S LANDFILL STUDY

- ❖ The average CH₄ flux values have been estimated from Delhi's landfills as 1911±506, 2014±596 and 1041±307 mg m⁻² h⁻¹ for Ghazipur (GL), Bhalswa (BL) and Okhla (OL) landfills.
- ❖ The CH₄ EFs for Delhi's landfills are 9.7±2.6, 5.5±1.6 and 5.5±1.7 Gg for GL, BL and OL respectively.
- * The CH₄ emissions are estimated as 4.6 ± 1.2 , 4.2 ± 1.3 , 1.4 ± 0.4 Gg for GL, BL and OL respectively.
- ❖ Total CH_4 emission from Delhi's landfills is **10.2±2.9 Gg**.
- * Comparison with different methodologies for CH₄ emission estimations reveals that in-situ measurement gives the lowest estimation whereas FOD method yields comparable estimations.

KNOWLEDGE GAPS IN DEVELOPING NATIONAL LEVEL EMISSION INVENTORY FOR EMISSIONS FROM LANDFILLS

Activity Data

- ✓ Class wise cities' MSW generation rates
- ✓ Collection efficiencies in different cities
- ✓ Compositions of MSW in different cities


Management practices of Municipalities

- ✓ Compaction activity, soil covering, leachates collection etc.
- ✓ Activities of rag pickers

Other issues

- ✓ Landfill characteristics, topography etc.
- ✓ Climatic conditions
- ✓ Physico-chemical and biological properties of MSW

Development of City-wise methane emission estimates in India using FOD method

City wise CH₄ emission estimation from landfills in India for 2011

Type of Cities	No. of Cities	CH ₄ Emissions (Gg/y)
Mega cities	7	136
Class I cities	475	275
Class II cities	493	43
Class III cities	1383	51
Class VI, V, VI towns	2825	39
New towns	2774	26
Total	7957	570

This value is lower than the reported CH₄ emission value from Indian landfills (604 Gg/y) for 2007 (India's SNC) due to incorporation of corrections related to city wise MSW collection efficiencies, waste composition and representative decay constant value.

Contributions:

Monojit Chakraborty Prabhat K. Gupta

Thanks for the attention