Tropospheric Chemistry over the IGP and the Central Himalayas

Manish Naja

Aryabhatta Research Institute of Observational Sciences [ARIES], Nainital

International workshop on Changing Chemistry in Changing Climate: Monsoon, IITM, Pune [1-3 May, 2013]

- The IGP region is undoubtedly one of the most polluted region in India.
 - Most densely populated region
 - Home to large agricultural activity, hence crop residue burning
- This region is also dominated by western disturbances.
- The Central Himalayas is in the transition region from tropical to mid-latitude tropopause and characterized by the tropopause-break.

Ghude et al., JGR 2013

MODIS Fire (Northern India)

[April 20 – May 20]

[Kumar, Naja et al., JGR 2011]

Observation Sites

Devasthal – 29.4N, 79.7E, ~ 2450 m Nainital – 29.4N, 79.5E, ~ 1958 m

Pantnagar – 29.0N , 79.5E, ~ 231 m Dehradun – 30.3N, 78E, ~640 m

IGP – 1000-more persons/km² Nainital – 25-100 persons/km²

Altitude in meters (amsl)

Observational facilities at ARIES

Aerosols

- AOD (MWR and Microtops)
- Black Carbon
- Aerosols number concentrations
- Particulate Matter

Trace Gases

- Pollutants (Ozone, CO, NO, NOy, CH₄, NMHCs, SO2)
- Balloon-borne observations of ozone and met parameters
- Greenhouse gases (CO₂, CH₄, N₂O and SF₆)

MetTower

Influences over the Central Himalaya: A Natural Laboratory

Nainital: A Regional Representative site for N. India / Central Himalaya Northern India is under the influence of air-masses arriving from Africa/Europe and Marine regions and also affected by emissions from IGP.

ARIES, Nainital [~ 1958 m]

Average diurnal variations in Dzone during four seasons

NMHCs at ARIES Nainital

(b)

(d)

(f)

(h)

Nainital (Central Himalayan site)

Pantnagar (IGP site)

Both the sites are about 30 km apart

Nitrogen Oxide (NO_x)

Pantnagar (March2011 - June 2012)

IGP site (Pantnagar)

Carbon Monoxide (CO)

Note the differences between Pantnagar and Nainital

Daytime and Nighttime correlation between ozone at Pantnagar and Nainital

Comparison with OMI, TES and Model

Ojha, Naja et al., JGR 2012

Accumulated Ozone Exposure Index (AOT40) at two IGP sites

AOT40 values are significantly higher than critical level (3000 ppbv*hr) \rightarrow Threat for vegetations over this region.

WRF-Chem Simulation

Ozone control

CH₂O/NO_y <0.28 VOC limited regime

>0.28 NOx limited regime

Mostly NOx limited region

But IGP show tendency of VOC limited region, mainly in Winter/Spring !!

Kumar, Naja et al., GMD 2012

Automobile combustion

Such influences/correlations are seen away from the source regions

Influence of fresh combustion

Ozone seasonal variations

Differences among N India, W India and S India

□ ____ Nainital - 2006

Hourly Average (NTL - 2006)

Ozone at Nainital

Ozone at Boudha, Nepal [2004-05]

Pandey et al., 2009

Nainital

Oct 04

Pandey et al., 2009

CO at Boudha, Nepal

Ozone sounding at the central Himalayas Vs the Central India

A comparison with few other higher altitude sites

AMF1 set up during GVAX (Ganges Valley Aerosols Experiment) at ARIES Nainital

51-148

Radiosonde

GVAX Balloon flights (ARM Mobile Facility-1, DOE, USA)

The high frequency radiosonde (1061) measurements were carried out during Ganges Valley Aerosol eXperiment 2011-2012.

Flight Time	Jan	Feb	Mar	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
IST 0530 hrs	30	26	30	3	31	29	28	25	26	29	257	
IST 1130 hrs	30	27	30	6	29	30	30	30	30	30	272	
IST 1730 hrs	31	29	28	3	30	27	30	31	29	31	269	
IST 2330 hrs	31	30	28	0	28	26	30	31	29	30	263	
	122	112	116	12	118	112	118	117	114	120	1061	

Wind Speeds

Wind speeds are highest in winter (~ 80m/s) months, indicating a presence of subtropical jet.

Greenhouse Gases [Since 2006] ^{co}

 N_2O

NIES, Tsukuba, Japan

Figure 5. Globally averaged N₂O mole fraction (a) and its growth rate (b) from 1980 to 2011. Annually averaged growth rate is shown by columns at (b).

GAW Bulletin no 8, Nov 2012

Future Change

Acknowledgment: it is in the tropics

•ISRO and DST •Rajesh, Narendra, Tapaswini, Piyush, Hema •Shyam Lal, M C Barth, G. Pisfter, G P Brassuer, Mark Lawrence

Thank you very much

Stratosphere Troposphere (ST) Radar (upcoming)

Highlights:

- Studies on winds, monsoon dynamics and Troposphere Stratosphere exchange
- Frequency 206.5 MHz
- Area Covéred : 30x30 m
- Continuous and high resolution winds
 - ~10 min for full profile
 - 50 to 300 m
 - Velocity resolution : 0.1 m/s to 2 m/s

RAWEX-GVAX Regional Aerosols Warming Experiment Ganges Valley Aerosols Experiment A multi institutional project DOE (USA), ISRO, IISc and ARIES

A major international initiative after about 13 years

High ozone event at Nainital

Contribution from dynamics, apart from Photochemistry

