Stochastic Physics Perturbations
For Ensemble Forecast

Yuejian Zhu
Ensemble Team
Environmental Modeling Center
NCEP/NWS/NOAA

Acknowledgements: Philip Pegion, Walter Kolczynski,
Dingchen Hou and Xiaqiong Zhou

Special thanks to IITM and Dr. Mukmopadhyay
Highlights

• Introduction
• Current status of global ensemble
• Testing of stochastic physics
• Next NCEP GEFS
• Where to go from here?
Uncertainties & disagreements

Ensemble forecast is widely used in daily weather forecast
Introduction (2)

2017 was 25th anniversary of both NCEP and ECMWF global ensemble forecasts into operational implementation
Introduction (3)

Description of the ECMWF, MSC and NCEP systems

Each ensemble member evolution is given by integrating the following equation

\[e_j(T) = e_j(0) + \frac{de_j(0)}{dt} + \int_{t=0}^{T} [P_j(e_j,t) + dP_j(e_j,t) + A_j(e_j,t)] \, dt \]

where \(e_j(0) \) is the initial condition, \(P_j(e_j,t) \) represents the model tendency component due to parameterized physical processes (model uncertainty), \(dP_j(e_j,t) \) represents random model errors (e.g. due to parameterized physical processes or sub-grid scale processes – stochastic perturbation) and \(A_j(e_j,t) \) is the remaining tendency component (different physical parameterization or multi-model).

Reference: - first global ensemble review paper

One year statistics of three ensembles:
NCEP, CMC and ECMWF

Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130901 – 20140831

Common measurement for perfect ensemble (bias free), without considering analysis uncertainty

NH 500hPa height
RMS error (solid) vs Spread (dash)

One year statistics of three ensembles:
NCEP, CMC and ECMWF
<table>
<thead>
<tr>
<th>Version</th>
<th>Implementation</th>
<th>Initial uncertainty</th>
<th>TS relocation</th>
<th>Model uncertainty</th>
<th>Resolution</th>
<th>Forecast length</th>
<th>Ensemble members</th>
<th>Daily frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>1992.12</td>
<td>BV</td>
<td>None</td>
<td>None</td>
<td>T62L18</td>
<td>12</td>
<td>2</td>
<td>00UTC</td>
</tr>
<tr>
<td>V2.0</td>
<td>1994.3</td>
<td></td>
<td></td>
<td></td>
<td>T62L18</td>
<td>16</td>
<td>10(00UTC)</td>
<td>00,12UTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4(12UTC)</td>
<td></td>
</tr>
<tr>
<td>V3.0</td>
<td>2000.6</td>
<td></td>
<td></td>
<td>T126L28(0-2.5)</td>
<td>T62L18</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T62L28(2.5-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4.0</td>
<td>2001.1</td>
<td></td>
<td></td>
<td>T126(0-3.5)</td>
<td>T62L28</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T62L28(3.5-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V5.0</td>
<td>2004.3</td>
<td></td>
<td></td>
<td>T126L28(0-7.5)</td>
<td>T62L28</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T62L28(7.5-16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V6.0</td>
<td>2005.8</td>
<td>TSR</td>
<td></td>
<td></td>
<td>T126L28</td>
<td></td>
<td></td>
<td>00,06,12, 18UTC</td>
</tr>
<tr>
<td>V7.0</td>
<td>2006.5</td>
<td>BV- ETR</td>
<td></td>
<td></td>
<td>T126L28</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V8.0</td>
<td>2007.3</td>
<td></td>
<td></td>
<td></td>
<td>T126L28</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V9.0</td>
<td>2010.2</td>
<td>STTP</td>
<td></td>
<td></td>
<td>T190L28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V10.0</td>
<td>2012.2</td>
<td></td>
<td></td>
<td></td>
<td>T254L42(0-8)</td>
<td>T190L42(8-16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V11.0</td>
<td>2015.12</td>
<td>EnKF (f06)</td>
<td></td>
<td></td>
<td>T1574L64(0-8)</td>
<td>T1382L64(8-16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction (5)

- An ensemble forecasting system should provide information on how much we can trust the forecast.
- This comes in the form of ensemble spread, which ideally would be close to the average error of the forecasts.
- Initial perturbed single modeling ensemble systems (e.g. NCEP and ECMWF) are generally over confident (under dispersion) on their forecasts.
Introduction (5)

• An ensemble forecasting system should provide information on how much we can trust the forecast.
• This comes in the form of ensemble spread, which ideally would be close to the average error of the forecasts.
• Initial perturbed single modeling ensemble systems (e.g. NCEP and ECMWF) are generally over confident (under dispersion) on their forecasts.
• Stochastic Physics could improve this relationship.
Stochastic Representation of Physical Uncertainty

Today

\[T = D + (1 + e) \sum_{i=1}^{N} P_i \]

Future

\[T = D + \sum_{i=1}^{N} (1 + e_i) P_i \]

\[T = D + \sum_{i=1}^{N} P_i (r_j (1 + e_{i,j}), j = 1, m) \]

\[T = D + \sum_{i=1}^{N} P_i (r_j (1 + e_{i,j}), j = 1, m) \]

Major physical schemes:
- Convection (shallow and deep)
- Clouds
- Radiation
- Gravity wave drag
- PBL
- Land-surface
- Others ?

\(T \) – total tendency
\(D \) – dynamical tendency
\(P \) – physical tendency
\(e \) – random pattern (4-d)
\(r \) – physical parameter
Model uncertainty in the operational GEFS

• Stochastic Total Tendency Perturbations (STTP)

\[\frac{\partial X_i}{\partial t} = T_i(X_i; t) + \gamma \sum_{j=1}^{N} w_{i,j} T_j(X_j; t) \]

– Random linear combinations of 6-hour tendency perturbations from the ensembles are applied to a given member during the model integration

– Reference:
 • Hou and et al, 2008

 – STTP has less impact to tropical area
Changes of NCEP Ensemble Spread (STTP)

Then

Average 00Z Ensemble Spread (Mar 2007 - Mar 2009)
168-h Forecasts of 500-mb Geopotential Height (n=745)

Now

Average 00Z Ensemble Spread (Mar 2012 - Mar 2013)
168-h Forecasts of 500-mb Geopotential Height (n=360)

Courtesy of Dr. Alcott Trevor
Model uncertainty in the GFS DA (EnKF) cycle

• **Dynamics:** Due to the model’s finite resolution, energy at non-resolved scales cannot cascade to larger scales.
 - Approach: Estimate energy lost each time step, and inject this energy in the resolved scales. a.k.a stochastic energy backscatter (SKEB; Berner et al. 2009)

• **Physics:** Subgrid variability in physical processes, along with errors in the parameterizations result in an under spread and biased model.
 - Approach: perturb the results from the physical parameterizations, and boundary layer humidity (Palmer et al. 2009), and inspired by Tompkins and Berner 2008, we call it SPPT and SHUM

• Above schemes has been tested for current operational GEFS (spectrum model) with positive response – plan to replace STTP for next implementation

See next slide for the example of random pattern
Examples of stochastic patterns

500 km / 6 h 1000 km / 3 d 2000 km / 30 d

(adapted from M. Leutbecher)
Current Status of Global Ensembles

Spring 2016 – NH 500hPa height

Northern Hemisphere 500hPa Height
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20160301 – 20160531

RMS error – solid line
Spread – dash line

Against own analysis

Upper atmosphere:

• Apply stochastic schemes and/or multi-physics
• All ensemble forecasts have reasonable spread compared to the errors

Spring 2016 – NH 2-m temperature

Northern Hemisphere 2 Meter Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20160301 – 20160531

RMS error – solid line
Spread – dash line

48-hour forecast
Assume analysis is a true reference
NCEP and EC forecasts are 1:2 (spread: error)
CMC forecast is 1:1.25 (spread: error)

Surface elements:

• Does not apply stochastic schemes
• All ensemble forecasts have more/less under dispersion (over confident)
Precipitation Forecast (1 year; 12-36hr; >5mm/24hr)

Reliability Diagram

fhr 12–36 For 20150301 - 20160229

- Observed frequency (%)
- Forecast probability (% >5.00mm)

RAW: RELI=0.008 BSS=0.361
CAL: RELI=0.005 BSS=0.399

80%

42%
Spread-Error relationship

2015 TC track AL/CP/EP/WP

- ERROR-T254
- ERROR-T574
- SPREAD-T254
- SPREAD-T574

T254 – Operation (ETR cycling)
T574 – Retrosp. runs (EnKF from 3DEnVar)

Less spread from EnKF (3D) did not appear for 2015 summer season
Stochastic Schemes for Atmosphere - Testing for GEFS

• **Stochastic Kinetic Energy Backscatter (SKEB)**
 – Represents process absent from model
 – Stream function is randomly perturbed to represent upscale kinetic energy transfer (Berner et al., 2009)

• **Stochastic Perturbed Physics Tendencies (SPPT)** – (ECWMF tech memo 598)
 – Designed to represent the structural uncertainty (or random errors) of parameterized physics
 – Multiplicative noise used to perturb the total parameterized tendencies (Palmer et al., 2009)
 – Biggest impact on tropic

• **Stochastically-perturbed boundary layer HUMidity (SHUM)**
 – The same formula as SPPT
 – Designed to represent influence of sub-grid scale humidity variability on the triggering of convection (Tompkins and Berner 2008)
 – Biggest impact on tropic
Characteristics of one summer month test

STTP \rightarrow strong at winter hemisphere
SKEB \rightarrow similar to STTP, but for large scale
SPPT \rightarrow big impact is tropical, not mid-latitude
SHUM – big impact is tropical, duplicate to SPPT
VC – big impact is high latitude
Change of ensemble spread from introducing new stochastic physics

New STTP at 120 h
500-hPa U spread-skill

112 forecasts
Ensemble Std Dev
m/s

112 forecasts
RMSE of Ens Mean
m/s

112 forecasts
% Diff from Ideal Spread-Skill Ratio
%

Sto_Phy at 120 h
500-hPa U spread-skill

112 forecasts
Ensemble Std Dev
m/s

112 forecasts
RMSE of Ens Mean
m/s

112 forecasts
% Diff from Ideal Spread-Skill Ratio
%

500hPa U

% diff from spread: error ratio

V11 (STTP)

V11 (with new stochastic)
Impact to temperature

North American 850-hPa Temperature
RMSE (solid) and Spread (dashed)

GEFSv11 – opr
GEFSv11 – w. SPs

GEFSv11 – opr
GEFSv11 – w. SPs
Precipitation reliability for 36-60hr and greater than 5mm/day

Summer-Fall 2013
Four months
Typical example of over-confident for precipitation forecast

Precipitation reliability for 36-60hr and greater than 5mm/day

10% <-> 14%
90% <-> 70%
e.g. when we predict 10% chance of 5+ mm, it happens 13% of the time
ECMWF has run SPPT

Hurricane Matthew
Initial: 2016092900

Top left – GEFS operation forecast (V11)

Top right – GEFS legacy forecast (V10)

Bottom left – ECMWF forecast
GEFS (opr)

Spread is too small?

GEFS (Legacy)

ECMWF

Spread is too large?

+ SPs

It helps spread

Not sure the mean error
GEFS week 3&4 forecasts (un-coupled)

Period: May 2014 – May 2016
Higher resolution (~50km) for week 3&4 with different SPs

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs

Extend 4-5 days of MJO skill

AC

Lead day

STTP
SPs
GEFS week 3&4 forecasts (un-coupled)

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs

Extend another 2 days of MJO skill

Period: May 2014 – May 2016
Higher resolution (~50km) for week 3&4 with different SPs
GEFS week 3&4 forecasts (un-coupled)

MJO skill: RMM1+RMM2
20140501-20160526 for STTP&SPs

- STTP
- SPs
- SPs+CFSBC
- CFSv2

How about MJO skill of coupling model ?

Period: May 2014 – May 2016
Higher resolution (~50km) for week 3&4 with different SPs
Tropical 850hPa U.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20150501 - 20151221

850hPa tropical zonal wind

With stochastic perturbations:
Error is reduced
Spread is increased

Tropical 250hPa U.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20150501 - 20151221

250hPa tropical zonal wind

With stochastic perturbations:
Error is reduced
Spread is increased
Under development – test uncertainties for land model

- **Stochastic Perturbed Tendencies of Land (SPTL) - EMC**
 - Designed to represent the uncertainty (and/or random errors) of land surface parameterization
 - Perturbed soil temperature/moisture directly

- **Perturb parameters of land model – PSD/ESRL**
 - Roughness, surface albedo and soil hydraulic conductivity

- **Initial perturbations of soil temperature/moisture – PSD/ESRL**
 - EOF analysis of the difference of NOAH and climate
EMC’s investigations

• Early investigation – GEFSv9
 – EMC visitor from CMA (Dr. Deng) in 2010
 – Initial Soil temperature/soil moisture perturbations

• Current investigation – based on GEFSv11
 – Not initial perturbations, but stochastic physics perturbations.
 – The same stochastic pattern as SPPT
 – Soil temperature – all four layers (1st try)
 – Both soil temperature/moisture
Model Lower Level Temperature

Temperature SP_Baseline std dev K

Temperature SP_soilTM_20x_logit std dev K

Temperature Difference K

2 Meter Temperature

Temperature SP_Baseline std dev K

Temperature SP_soilTM_20x_logit std dev K

Temperature Difference K
North American 2 Meter Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130801 - 20130807

Summary:
- Stochastic of atmosphere could help to increase spread
- Stochastic perturbations of soil temperature/moisture could help another additional

Large under-dispersion
ESRL/PSD’s Investigations

• In land model, perturb surface momentum roughness length (Z_0), thermal roughness length (Z_t) and soil hydraulic conductivity (SHC)

• Test sensitivity of surface albedo

• Parameter values are perturbed using spatially and temporally correlated random patterns, as in SPPT and SHUM.

• Only a slight increase (0.1 K or less) in spread, even when combining SHC and roughness perturbations. Perturbing albedo has a larger effect, but still only ~0.25 K for the largest perturbation.
Sensitivity test for albedo perturbations

2-m Temperature Spread (Land Only)

Northern Hemisphere

Tropics

Sensitivity test for albedo perturbations

Courtesy of Dr. Maria Gehne
Next GEFS (version 12)

- Introduce new dynamic core – FV3
- Integrate current/improved physics
- C384L63 (25km) for day 1-8
- C192L63 (50km) for day 8-35
- 21-31 members per cycle, 4 times per day
- Initial perturbations – EnKF f06
- Model uncertainties
 - Stochastic perturbations for atmosphere
 - Stochastic perturbations for land
- Ocean boundary – SST
 - Introduce bias corrected coupled predictive SST
 - NSST to assimilate diurnal variation of SST
- Reanalysis and reforecast to support downstream application
Where to go from here?
Towards physically based stochastic parameterization - NGGPS

• Direction of future model physics development
 – Physically based stochastic parameterization
 – Not deterministic solution, but full representation of model uncertainty
 – Generates ensemble realizations of tendencies including realistic space-time correlations.
 – From tunable to functional

• Closed coordination (or work together) between model physics and ensemble development.
 – Connection through NGGPS CCPP (Common Community Physics Package)
 – Verify new stochastic parameterization in terms of ensemble metric (GMTB - Global Modeling Testbed)

• Identify (and/or understand) source of uncertainty, the key parameters to produce model errors (for different scales?), such as:
 – Convective trigger?
 – Rate of entrainment (updraft)/Detrainment (downdraft)?
 – Turbulence and convection parametrizations? - EDMF
 – Parameters in the microphysics?
 – Many others???

• Physically based scheme should be appropriate for all scales (scale aware), not only one/two schemes.
Towards physically based stochastic parameterization - NGGPS

• Should we?
 – Avoid to spend major resources on:
 • Multi-model or multi-physics approach?
 • Ad-hoc stochastic physics process?
 – Pay attention to:
 • Land surface process (important to improve surface elements of forecast)
 • Ocean surface (SST) (important to extend forecast, week 2, 3, &4)
 • HIW, such as tropical storm forecast
Model error at mesoscale:
Example: cloud microphysical processes

Conversion processes, like snow to graupel conversion by riming, are very difficult to parameterize but very important in convective clouds.

Especially for snow and graupel the particle properties like **particle density** and **fall speeds** are important parameters. The assumption of a constant particle density is questionable.

Aggregation processes assume certain collision and sticking efficiencies, which are not well known.

Most schemes do not include **hail processes** like wet growth, partial melting or shedding (or only very simple parameterizations).

The so-called **ice multiplication** (or Hallet-Mossop process) may be very important, but is still not well understood.

from Axel Seifert presentation to NCAR ASP summer colloquium
Stochastic Deep convection

The Plant-Craig stochastic convection scheme

1. Closure assumption scales a pdf of cloud radii

2. Draw clouds randomly from this pdf
Figure: Schematic diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw)

Stochastic Parameterization

“Convective trigger”

Convective Trigger function in most cumulus parameterization scheme (SAS: Simplified Arakawa-Schubert)

\[P_{LSC} - P_{LFC} \leq DP(w) \]

Convection is triggered,

\[P_{LCS} - P_{LFC} > DP(w) \]

No sub-grid convection

LSC – Level of Start Convection

LCL – Lifted Condensation Level

LFC – Level of Free Convection

CIN – Convective Instability

CAPE – Convective Available Potential Energy

EL – Equilibrium Level

W – Vertical Motion

DP(w) – SAS trigger function (delta pressure)

R(N) – Random function (small delta pressure)
Extra slides – may be for discussion?
Towards physically based stochastic physics/parameterization

- **ECMWF**: New scheme, SPP: Stochastically Perturbed Parameterizations (starting with cloud/radiation interaction)
- **Enviro Canada**: In development: Plant-Craig stochastic deep convection, cloud model is adopted from the Bechtold scheme (closure is still deterministic, plume generation is stochastic)
- **UK Met** is testing random parameters in physics schemes. Parameters include droplet number in microphysics, entrainment rate, turbulent mixing rates.
SKEB - Spectral Kinetic Energy Backscatter

- **Rationale:** A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)

- **Streamfunction forcing is given by:**

\[F_{\Psi}(\lambda, \mu, \eta, t) = \sqrt{b_R D_{tot} F(\lambda, \mu, \eta, t)} \]

- **Figure 6 from Berner et al. (2009)**

Rotational Component

- **No SKEB**
- **With SKEB**

Divergent Component

- **Total dissipation rate**
- **Backscatter ratio**
- **Pattern generator**

Power Spectrum

- **Total Wavenumber n**
Schematic of the Madden-Julian Oscillation - cross-section along equator

- Upper level divergence
- Enhanced evaporation
- Low level convergence
- Mean westerly wind
- Increased shortwave flux

Cold to warm transition over approximately 60° of longitude or ~30 days
What other global centers are doing?

- ECMWF
 - Operational: SPPT and SKEB in the medium/extended range, Ensemble DA only uses SPPT
 - In development: Modifications to SPPT (SPPTi and work on ensuring global integral of tendency perturbations is zero)
 - New scheme, SPP: Stochastically Perturbed Parameterizations (starting with cloud/radiation interaction)
What other global centers are doing?

• Environment Canada:
 – Operational: PTP (similar to SPPT), SKEB and multi-physics
 – In development: Plant-Craig stochastic deep convection, cloud model is adopted from the Bechtold scheme (closure is still deterministic, plume generation is stochastic)
What other global centers are doing?

- UK Met is testing random parameters in physics schemes similar to the land surface perturbations that Maria and Gary are working on.
- Parameters include droplet number in microphysics, entrainment rate, turbulent mixing rates.

Increase in spread is small, and ensemble is still under-spread in near surface wind and temperature, but improves fog forecasts. They are also perusing land surface perturbations.
Physically-based Stochastic Perturbations (PSP)

Implementation in COSMO model (2.8 km grid length)
- Add random increments to model variables
- Amplitude scaled using turbulence theory
- Rescaled to account for averaging over effective horizontal resolution
- Perturbations are coherent in height and over 10 min in time

\[
\left(\frac{\partial \Phi}{\partial t} \right)_{sh}^{stoch} = \frac{\partial \Phi}{\partial t} + \alpha_{sh} \cdot \eta_{sh} \cdot \langle \Phi^2 \rangle^{1/2}
\]

\[
\frac{\partial \Phi}{\partial t} : \text{tendency of } \Phi \text{ of all physical parameterizations}
\]

\[
\Phi : \text{resolved variable (T, w, q)}
\]

\[
\alpha_{sh} : \text{scaling factor}
\]

\[
\eta_{sh} : \text{Gaussian random perturbation}
\]

\[
\langle \Phi^2 \rangle : \text{variances from turbulence parameterization}
\]

\[
\alpha_{sh} = \alpha_{sh,\Phi} \cdot \frac{\ell_\infty}{5 \cdot dx} \cdot \frac{1}{dt}
\]

\[
dt : \text{temporal resolution of model}
\]

\[
\ell_\infty : \text{asymptotic mixing length}
\]

\[
dx : \text{horizontal resolution of model grid}
\]

\[
\alpha_{sh,\Phi} : \text{scaling factor}
\]

(Kober and Craig 2016)
Where to go from here?

- Need closed coordination (or work together) between model physics and ensemble development.
- Identify (and or understand) the key parameters to produce model errors (for different scales?)
- Develop physics based stochastic parameterization schemes
- Physically based scheme is appropriate for all time scales (scale aware - hourly to seasonal) and spatial resolutions (less Km to ???)
- Multi-model or multi-physics approach????
- Land surface needs more attention
- Ocean surface needs more attention
- Tropical storm needs to investigate (could be related issue, not only for stochastic, but also initial perturbation)
Contribution of Variables

U200

- STTP
- SPS
- GEFS_v10
- SPS+CFSBC+NSST
- SPS+CFSBC
- CFSv2

U850

- STTP
- SPS
- GEFS_v10
- SPS+CFSBC+NSST
- SPS+CFSBC
- CFSv2

OLR

- STTP
- SPS
- GEFS_v10
- SPS+CFSBC+NSST
- SPS+CFSBC
- CFSv2