Direct Lagrangian tracking simulations of droplet growth in clouds

<u>Ryo Onishi¹</u>,

Keigo Matsuda¹, Yuichi Kunishma², Dmitry Kolomenskiy¹, Keiko Takahashi¹ (1)Earth Simulation Research Group (ESRG) Center for Earth Information Science and Technology (CEIST) Japan Agency for Marine-Earth Science and Technology (JAMSTEC) (2) Kyushu University

IWCMS, IITM-pune, 16 August, 2018

Brief introduction of ESRG activity

 We choose research themes, in Marine-Earth science, that are interesting in physics and challenging in computation.

Our research themes are often related with turbulence.

Atmosphere-Ocean coupled multiscale model: Multi-Scale Simulator for the Geoenvironment (MSSG)

global scale O(1~10 km) resolution

regional sale O(100 m~1km) resolution

street scale O(1~10 m) resolution

Seamless simulations for global, regional and street scales

> atmosphere-ocean coupled

Group Mission

Multiscale, multiphase and non-equilibrium turbulence processes in marine and Earth Science

Contents

- Cloud microphysics simulations
 - Eulerian and Lagrangian frameworks
 - Droplet growth in clouds
- Direct Lagrangian tracking simulations
 - Turbulent collision kernels
 - Droplet collision growth in box turbulence
 - Droplet growth in a vertically-developing cloud
- Miscellaneous (on-going work)
 - Size-resolving simulation
 - Turbulence influence on Radar reflectivity

Cloud microphysics schemes

	Euler fra	mework	Lagrangian framework		
Method	Bulk	Bin	Super-Drop	let Direct	
Prognosed variables	Moments of size distribution $M_k^n = \int m^n f_k(m) dm$		Particle attributions x_p, u_p, r_p etc		
Size distribution	Implicit	Explicit	E	xplicit	
Num. of Categories	<10	O(10~100)			
Multiplicity	-	-	1≦	1 (direct)	
Illustration	vapor cloud rain	vapor 0 0 0 0 0 0 0 0 0 0	before coalescence after coale $\xi=2$ $\xi=3$ $\xi=2$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=3$ $\xi=$		
References	Many	Many (incl. Onishi & Takahashi(2012) La JAS)	Shima et al. (200 QJRMS Igrangian cloud	09) Onishi et al. (2015) JAS; Gotoh et al. (2016) NJP model	

7

Droplet growth in clouds

- Activation
- Condensation/evaporation
- Collision (coagulation) \rightarrow challenging in HPC
- Settling(Precipitation)

Turbulent collisions of inertial particles

- Quick rain formation in turbulent clouds (refs: Shaw (2003), Grabowski & Wang (2013), etc...)
- Industrial flows

 e.g., spray combustion, pulverized coal combustion

LCS(=Lagrangian Cloud Simulator)

Flow

- 4th-order FDM
- 2nd-order R-K
- RCF⁽¹⁾: large-scale forcing
- 3D domain decomposition

Particles

- Lagrangian tracking
- 2nd-order R-K
- Cell-index method
- BiSM⁽²⁾ for hydrodynamic interaction
- 3D domain decomposition

Following the so-called hybrid DNS approach (Wang et al. 2005; Ayala et al. 2007)

(1)Onishi et al. (2011) *J. Comput. Phys.*(2)Onishi et al. (2013) *J. Comput. Phys.*(3)Onishi et al. (2015) *J. Atmos. Sci.*

Domain Decomposition

(for distributed-memory parallelization)

ID domain decomposition

> 2D domain decomposition

> 3D domain decomposition

Cell index method for detecting neighboring pairs

- Originally developed for MD simulation.
- (1)Divide computational domain is into cells.
- (2)Make the list that shows which particle locates in which cell.
- (3)Detect pairs in 27 cells* using the cell index.

*14 cells are enough for sequential procedure

This method can reduce the cost for detecting neighboring pairs: $O(Np^2) \rightarrow O(Np)$

DNS for Turbulent collision statistics

 \succ Flow motion: Imcompressible N–S eq.

of grids

64³

 $k_{max}l_{\eta}$

2.0

1 Onishi et al. (2009)	PoF	
------------------------	-----	--

	128 ³	2.0	81.3	64 ³	Onishi et al. (2009) <i>PoF</i>
	256 ³	2.0	126	128 ³	
	512 ³	2.0	207	256 ³	
ES2 -	1,0003	2.0	323	500 ³	
	2,0003	2.0	527	$1000^{3}_{(=1)}$	Onishi et al. (2013) <i>JCP,</i> Onishi & Vassilicos (2014) <i>JFM</i>
V	4,000 ³	2.0	860	1.6 billion	
	6,000 ³	2.0	1,120	5.4 billion	1 Onishi & Seifert (2016) ACP
new ES→	8,192 ³	2.0	1,390	8.2 billion	13

 R_{λ}

54.9

of particles

 32^{3}

Collision kernel, $K_c(r_1, r_2)$

• Collision frequency $N_c [1/(m^3 s)]$;

 $N_c(r_1, r_2) = n_p(r_1) n_p(r_2) K_c(r_1, r_2),$

where $n_p [1/m^3]$ is the particle number density.

Gravitational collision kernel

 $K_{c}(r_{1}, r_{2}) = \pi R^{2} |V_{\infty}(r_{1}) - V_{\infty}(r_{2})|$

(R: collision radius (= r_1 + r_2), V_{∞} :settling velocity)

Turbulent collision kernel

<< spherical formulation (Wang et al., (2000) JFM)>>

$$\langle K_c(r_1, r_2) \rangle = 2 \pi R^2 \langle |w_r(x=R)| \rangle g(x=R)$$

R : collision radius (= r_1 + r_2) $|w_r|$: radial relative velocity at contact g(R): radial distribution function at contact (clustering effect)

$$St = \frac{\tau_p}{\tau_\eta} = \frac{2}{9} \frac{\rho_p}{\rho_f} \left(\frac{r}{l_\eta}\right)^2 \quad \left[\frac{\tau_p: \text{ particle relaxation time}}{\tau_\eta: \text{ Kolmogorov time}}\right]$$

	radius[µm]	St
CCN	<1	<<1
Cloud droplets	10	0.01
	30	0.1
Rain drops	100	1
Large drops	1000<	10

Clustering enlarges the collision probability.

Re-dependence of $g_{11}(R)$ for St<1

Turbulent Kc modeling

- Mechanism of the Re-dependence of clustering
 - Onishi & Vassilicos (2014) JFM
- Modeling of turbulent collision kernel
 Onishi & Seifert (2016) ACP (where fortran code provided as a suppliment)
- Bulk parameterizations of turbulent collision growth (autoconversion and accretion)
 Seifert & Onishi (2016) ACP

Lagrangian tracking droplet collision growth simulation

*Gravitational droplet Settling (precipitation) is considered as well.

Onishi et al. (2015) JAS

courtesy of Dr. Matsuda (JAMSTEC)

Why direct Lagrangian particle tracking simulation?

For robust reference data

We can directly analyze multi-scale phenomena without separating macro- and micro-scales.

- Recirculation of rain drops (Naumann & Seifert 2016 JAMES) or of ice particles (Yang et al. 2015 JGR Atmos.)
- Evaporative and radiative cooling in cloud turbulent mixing layer (e.g., de Lozer & Mellado 2013JAS, Kumar et al. 2014JAS)

but several physics (particularly, **collisions**) have been skipped in literature

[For intrinsic statistical fluctuations] We can obtain new kind of information regarding statistical fluctuations and can investigate individual realizations, not the ensemble-averaged statistics.

NB. [Prediction error]=[Practical error] + [Intrinsic error]

Onishi et al. (2015) J. Atmos. Sci.

Collisional growth simulation

Fluid and Scalars (Euler method)

Onishi et al. (2011) J. Comput. Phys. $\nabla \cdot \mathbf{U} = 0$ $\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \mathbf{U} + \beta(T - T_0)\mathbf{g} + \mathbf{F}(\mathbf{x}, t)$ $\frac{\partial L_v}{\partial t} + (\mathbf{U} \cdot \nabla) L_v = \nu_v \nabla^2 L_v + S_p(\mathbf{x}_p, t)$ $\frac{\partial \overline{T}}{\partial t} + (\mathbf{U} \cdot \nabla)T = \nu_T \nabla^2 T + H_p(\mathbf{x}_p, t)$

Particles (Lagragian tracking method)

$$\frac{d\mathbf{V}}{dt} = -\frac{f_{NL}}{\tau_p} \left(\mathbf{V} - \left(\mathbf{U}(\mathbf{x_p}, t) + \mathbf{u}(\mathbf{x_p}, t) \right) \right) + \mathbf{F}_{impulse} + \mathbf{g}$$

$$\frac{dm_p}{dt} = \left(\frac{dm_p}{dt} \right)_{coll.impulse} + \left(\frac{dm_p}{dt} \right)_{cond/evap}$$

$$\left(\frac{dm_p}{dt} \right)_{cond/evap} = 4\pi D_v \rho_v r \sigma_v$$
(Dishi et al. (2013) *J. Comput. Phys.*)

Computational setting (flow)

	<i>N</i> ³	<i>L</i> ₀ [m]	Re	u'/U_0	$k_{max}l_{\eta}/L_0$	L_f/L_0	Re_{λ}	ε [cm ² /s ³]	
NoT	32 ³	0.0127	0	0	-	-	0	0	
T100	96 ³	0.0180	97.4	1.00	2.04	1.64	66.1	100	
Т	96 ³	0.0127	97.4	1.00	2.04	1.64	66.1	400 ~Ty	ypical Cu
T1000	96 ³	0.0101	97.4	1.00	2.04	1.64	66.1	1000	
TR127	256 ³	0.0338	360	0.98	2.06	1.44	127	400	
TR206	512 ³	0.0669	908	1.00	2.06	1.43	206	400	

Computational setting (droplet)

	Flow	Hydrodynamic	initial number density	initial number of
		Interaction (HI)	$n_{p0} [1/\text{m}^3]$	particles, N_{p0}
NoT-NoHI	stagnant	no	1.42×10^{8}	7.24×10^4
NoT- HI	stagnant	yes	1.42×10	7.24×10^4
T-NoHI	turbulent	no		7.24×10^{4}
T- HI		yes		7.24×10^{4}
T100-HI		yes	1.42×10^{8}	2.05×10^{5}
T1000-HI		yes	~Typical C	3.64×10 ⁴
TR127-HI		yes	i ypical cu	1.36×10^{6}
TR206-HI		yes		1.06×10^{7}

Initial size dist. of the group of droplets:

$$f_0(x) = \frac{n_0}{x_m} \exp(-x/x_m),$$

where x is the particle mass, x_m (set to $m(r=15\mu m)$) is the mean particle mass.

Present SCE simulation

Stochastic Collection Equation (SCE)

$$K_{coal} = E_{coal} * E_c * K_c$$

$$\left(\frac{\partial n_p(m)}{\partial t}\right)_{col} = \frac{1}{2} \int_0^m \frac{K_{coal}(m-m',m')n_p(m-m')n_p(m')dm' - \int_0^\infty \frac{k'}{K_{coal}(m,m')n_p(m)n_p(m')dm'} - \int_0^\infty \frac{k'}{K_{coal}(m,m')n_p(m)n_p(m')dm'}$$

- Coalescence efficiency: *E_{coal}*=1
- Collision efficiency:
 - $E_c = 1$ for NoHI
 - $E_c = E_c$ (Pinsky et al., 2001) for NoT-HI
 - $E_c = E_c$ (Pinsky et al., 2001)* η_E (Wang et al. 2008) for T-HI
- Collision kernel:
 - *K_c*[NoT]=gravitational kernel
 - *K_c*[T]=Onishi turbulent kernel (Onishi & Seifert 2016)

Mass density function, $\xi(\varphi)$

 $\int \xi(\varphi) dy$, where $\varphi = \log_{10} r$, obtains the liquid mixing ratio [kg/m³].

Stagnant (NoT) case

Mass density function, $\xi(\varphi)$

 $\int \xi(\varphi) dy$, where $\varphi = \log_{10} r$, obtains the liquid mixing ratio [kg/m³].

Warm-rain conversion parameterizations for Bulk cloud microphysics models

Liquid water is classified into CLOUD (small droplets, usually smaller than 40um in radius) and RAIN categories.

- autoconversion
 - CLOUD + CLOUD = >RAIN

collision/coagulation

- accretion
 - CLOUD + RAIN = >RAIN
- condensation
 - vapor ⇔ CLOUD, RAIN

Autoconversion models

Kessler, 1969

kerne

model

$$P_{auto} = a\rho(q_c - q_{c,0})H(q_c - q_{c,0}),$$

Here, α is a tuning constant, $q_{c,0}$ is the threshold water mixing ratio and H is the Heaviside step

function. In this study $\alpha = 10^{-3} \text{ s}^{-1}$ and $q_{c,0} = 0.5 \times 10^{-3} \text{ kgkg}^{-1}$

- No explicit turbulence effect included.
- Seifert et al., 2010 (SNS2010)

$$P_{auto} = \frac{k_{cc}}{20m^*} \frac{(\mu+2)(\mu+4)}{(\mu+1)^2} L_c^2 \overline{m_c}^2 \left\{ 1 + \frac{\Phi_{auto}(\tau)}{(1-\tau)^2} \right\},$$
$$k_{cc}(\overline{r_c}, \mu, \varepsilon, Re_{\lambda}) = k_{cc,0} \left\{ \underline{1 + \varepsilon Re_{\lambda}^{1/4}} \left[\alpha_{cc}(\mu) \exp\left\{ - \left[\frac{\overline{r_c} - r_{cc}(\mu)}{\sigma_{cc}(\mu)} \right]^2 \right\} + \beta_{cc} \right] \right\}$$

Turbulence effect is explicitly considered in the form of

 $P_{auto} \propto 1 + C_{\rm SNS} \ \varepsilon \ Re_{\lambda}^{1/4}$

Parameterization based on the SCE results with Ayala

Time evolutions of conversion rates

Statistical fluctuations (relative std.) of autoconversion timescale

Concluding remarks

Direct Lagrangian tracking DNS can provide

- robust reference data regarding droplet collision growth,
- intrinsic (due to discreteness of particle numbers) statistical fluctuations.

The DNS results have shown

- the significant impact of HI and turbulence on the droplet collision growth rate,
- large intrinsic statistical fluctuations.

Lagrangian tracking droplet growth simulation

Includes activation, condensation, collision and precipitation

Kunishima & Onishi, Direct Lagrangian tracking simulation of droplet growth in vertically developing cloud, *Atmos. Chem. Phys. Discuss.*, https://doi.org/10.5194/acp-2018-328, under minor revision

(Quasi-) 1D simulation by LCS

(10m)³-box simulation is feasible.

e.g., collision statistics simulations with 6,000³ flow grids with 5.4 bil. particles (Onishi & Seifert, 2016 *ACP*) or 8,192³ flow grids with 8.2 bil particles.

somen noodle domain!

O((1m)²) x O(1000m) – extremely-vertically– elongated box simulation is feasible.

Kinematic (pseudo-) 1D simulation

- 1D warm rain simulation (warm1) in KiD (Kinematic Driver; B. Shipway & A. Hill@UKMO)
 - cloud physics and dynamics are not coupled.
 - 3600s integration

LCS for KiD-warm1

Fluid and Scalars (Euler method)

flow $\nabla \cdot \mathbf{U} = 0$ $\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\frac{1}{\rho}\nabla p + \nu \nabla^2 \mathbf{U} + \beta (T - T_0)\mathbf{g} + \mathbf{F}(\mathbf{x}, t)$

vapor
$$\frac{\partial L_v}{\partial t} + (\mathbf{U} \cdot \nabla)L_v = \nu_v \nabla^2 L_v + S_p(\mathbf{x}_p, t)$$

temp.
$$\frac{\partial T}{\partial t} + (\mathbf{U} \cdot \nabla)T$$
 Prescribed_{H_p}($\mathbf{x}_{\mathbf{p}}, t$) -

Particles (Lagragian tracking method)

$$\frac{d\mathbf{V}}{dt} = -\frac{f_{NL}}{\tau_p} \left(\mathbf{V} - \left(\mathbf{U}(\mathbf{x}_p, t) + \mathbf{u}(\mathbf{x}_p, t) \right) \right) + \mathbf{F}_{impulse} + \mathbf{g}$$
$$\frac{dm_p}{dt} = \left(\frac{dm_p}{dt} \right)_{avll invertee} + \left(\frac{dm_p}{dt} \right)_{avrl invertee} + \left(\frac{dm_p}{dt} \right)_{avrl invertee} + \mathbf{g}$$

disturbance vel. due to hydrodynamic interactions.

computational setups

	domain [m³]	number of particles	initial N _{aero} [m ⁻³]	number of time steps
SMALL	0.01x0.01 x 3000	1.50 x 10 ⁷	5.0x 10 ⁷	2.88 x 10 ⁶
LARGE	0.03x0.03 x 3000	1.35 x 10 ⁸	5.0x 10 ⁷	2.88 x 10 ⁶
VERY LARGE	0.1 x0.1 x 3000	1.50 x 10 ⁹	5.0x 10 ⁷	

- Many (30) runs for SMALL.
- > 2 runs for LARGE so far.
- VERY LARGE is feasible but painful (i.e., not yet done).

Present talk is based on SMALL setup.

Bulk statistics - water path

LCS results agree with Bin results with 528 classes [1].
 [NB] N_{aerosol} is kept constant in Bin, while it changes in LCS.

[1] Onishi, Takahashi. J. Atmos. Sci. 69 (2012)

Bulk statistics -Liquid Water Content

Bin simulation [1] suffers from numerical diffusion, while LCS does not.

[1] Onishi, Takahashi. J. Atmos. Sci. 69 (2012)

Lagrangian statistics - no. of collisions

• Each rain drop consists of O(10⁴) particles.

i.e., Each rain drop collects droplets with 17.8 um in radius on average.

Back trajectory of a surface raindrop

Max. altitude is attained at t~600s, when the updraft is halted.

Down-sky Race to the ground!

- Start 'Bang' at t=600s. The goal is the ground.
- "Top1" drop reaches the ground around t=1280s (fluctuates race to race).

Lagrangian statistics –Max. altitude agaist T_{surf}

- Total nominated surface raindrops (*participants*): 15,221 for 30 races
 - **Positive** correlation

Lagrangian statistics -Max. altitude against T_{surf} for Top10 particles

If limited to Top10 particles, negative correlation.

Concluding remarks

- Lagrangian Cloud Simulator (LCS)
 - Powerful meteorological tool -to fill the gap between microscale (microphysics) and large scale (cloud development).
 - Unique tool to investigate the intrinsic statistical fluctuations in cloud microphysics.
- LCS for quasi-1D domain with KiD-warm1 condition succeeded in investigating Lagrangian statistics (Back-trajectory analysis) of droplet growth.

<u>Acknowledgement</u>

This research was partly supported by MEXT as "Exploratory Challenge on Post-K computer" (Frontiers of Basic Science: Challenging the Limits) and also by MEXT as KAKENHI KIBAN-B (No. 16H04271).