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An Overview of MicroHH

What is MicroHH ?

A CFD Setup for Simulation of Turbulent flows in periodic
domains with focus on atmosphere

Stevens et al., MWR., 113, 2005

Heus et al., GMD, 3,2010)

Maronga et al., GMD,8, 2015)

(Van Heerwaarden et al, GMD, 10., 2017)




An Overview of MicroHH

Why MicroHH ?

* To come up with solver that is ready for massively parallel simulations
» Performance, Scaling & Design
»Fixing these problems often requires a substantial structural change to
entire code
» May require a new version implementation algorithm

*To take advantage modern trends of computing on Graphic Processing Units

* To support both DNS & LES on a common MPI-OMP-CUDA enabled platform
with more than 10000 cores

*To cater to a wide range of applications ranging from Neutral Channel flows to
Cloudy Atmospheric Boundary Layers in Large Domains



An Overview of MicroHH

How is MicroHH Designed?

View Dynamical Core



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

=Dynamical core of MicroHH solves the conservation of
Mass, Momentum and energy under the Anelastic

Approximation.

= 15t Anelastic approximations:

The Buoyancy Force is a major component of vertical
momentum equation.

» Motivated by geophysical flows for which the
effects of stratification are important



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

n2nd Anelastic approximations:

The characteristic vertical displacement, D, of an air parcel
is comparable to the density scale heighti.e. D ~ H,

» This removes the limitation of the Boussinesq
approximation, which is valid only for flows whose
vertical displacements are small compared to the
density scale height

» Anelastic approximation subsumes the physics of
Boussinesq approximation.



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

= 39 Anelastic approximations:

The horizontal variations of the thermodynamic state
variables at any height are small compared to the static
value at that height, for example:

#'(x,y, 2, 1) = 8(z),

» This suggests that linearization of

thermo-dynamics relations is valid 8'(x, v, 7. 1)

in the anelastic approximation. 9 (2) = e) = 1.
» Lipps & Hemler (1982) argue that |

> Is it a constraint on the structure

of the base-state atmosphere?

> s it valid ONLYfor adiabatic flow?




Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Conservation of Mass:

dpou;  Auy
ax; _'QDBJ-:I-

+ prH;l =0 (1)

Where the scale height for density H,

1
H, = (i@) 2)
po dz
H, - 00 then (1 > ou; _0 (3)

ax;



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Thermodynamic Relations & Conservation of
Momentum:

Some notations:

5'1’; Perturbation of virtual potential temperature
Gy Reference virtual potential temperature

p’r Perturbation Pressure

pf Perturbation density

£20 Reference density



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996
More notations & Relations :

e Dry Potential temperature 7
.

:E’l Liquid Water potential temperature 0 ~= 6 — 11 i1
r
it Total Specific Humidity
dv.  water Vapor Specific Humidity
Q]. . . oge o g
The Cloud Liquid Water Specific Humidity g1 = max{0, g —gs)

L+ Latent Heat of Vaporization

Cp Specific Heat of dry air at constant pressure » \Rer
I Exner Function 1= (%)
€ €4
95 saturation specific humidity T (=) e
€ Dry air and water vapour gas const. ratio Ra/Ry

€3 Saturation vapour pressure



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996
More notations & Relations :

5'1; Virtual Potential temperature
R, R,
=6(1-]|1-Z|g -2
=o(1-[1- 2 |a - pa)
dp[; Base Static Pressure dp[] — —pggdz
20 Base Density 00 = po/(Rq TI G40)

Integration with height results in

—2(Zp+1 — 2z)
Ra 1T &40

Pok+l = Pok eu“ip(



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Thermodynamic Relations & Conservation of
Momentum:

5.:; B ?' o
9o pogH,  po 4
du; 1 dpouin; a (p’)
at Joly E}Ij dx; \ o (5)
9l 8wy
_I_ 51'33_ _I_ V " _I_ F:T::
0 adx



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Thermodynamic Relations & Conservation of
Momentum:

Under Boussinesq approximation (4-5) reduce to:

& _ P ©
v0 £0

du; dujw; 1 ap’ g 8%u

i _ Higj 1 0P NI DAia SR Hz_l_Fi 7)

af E)‘Ij po dx; wany E};.:?



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Pressure Equation

d d (1 dpof (i)
— | po— | — — (8)
J X; dx; \ oo ax;

Under Boussinesq approximation (8) reduce to:

8 (ﬁ’) _af (uy) )

@ E dx;




Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Conservation of an Scalar

R 1 dpnu; 82
ﬁf’__ £ Jﬁf’_l_}% qz—l-Scj: (10)
ax:

J

E N £0 BIJ'
K The Diffusivity

3¢ Source/Sink



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Conservation of Energy:

MicroHH supports different Energy Conservation Equations

For Dry Dynamics

ag 1 dpou ;6 ag 4
o T e+ —— ¢ (11
at 20 BIJ' E}x}. pgﬂ‘pT@

For Wet Dynamics replace 5' by QI Liquid water potential temperature



Dynamical Core: Governing Equations

Bannon, P.R, JASci., 53, 1996

Simplified Conservation of Momentum & Energy:

Using Buoyancy b=1{g/0.,0) g::r (13)

Eqns. (6-7), (11) become

. _— / 2.0
Ju;  OHH | _ _iap —|—553b—|—va 7% (1)
af E}Ij Po 0X; axj
ob  Obu; b (15)
= K, —
af a:-:j E}E};.:r":' + e

J



Dynamical Core: Governing Equations

For Slope Flows in periodic Domians with linear

thermal stratification: Fedorovich & Shapiro, 2009
du  Odu;u 1 ap dy
— = —— — +sin(a)p +v—r7i (16)
ot dx; oo Ax sin{e)b o+ ox;
aw_l_é‘mjw 1 ap f-l— )b+ 82w
= —— —— T COsRI¥ V——F
dt OX ; p[] az 3:-:? )
ab  dbu; a%b
— = xp—— — (1 sin{cx )
¢ dx; ax (18)

+w EDS(&))NE +

Background stratificaton in units of buoyancy N2 — (g/6v0)(d8 /Ao



Dynamical Core: Numerical Implementation

Few Relevant Comments on Grids:
*Galilean Transformation is possible
»One can apply a uniform translation velocity to
the grid and thus let it move with flow.
*Governing Equations are invariant under the
translation
*Has potential for larger time steps and can also
increase accuracy
*Has a default equal order representation of
advection, diffusion etc. but allows overriding as
desired.
*Grids can be stretched in vertical dimension
*Grid Hieghts are w.r.t cell centers



Time Integration

*Prognostic Equations are solved using Runge-Kutta time
integration schemes
»Option One: A Three Stage Third Order RK scheme
(Williamson, 1980)
»OptionTwo: A Five Stage Fourth Order RK Scheme
(Carpenter & Kennedy, 1994)
**Generic Form:

8¢), = Fdn)+an(dd), 1 (16)

Pnt+1 = Pn + bﬂﬂf(“ﬁﬁf’)ﬂ (17)



Time Integration
» For Three Stage Third Order RK scheme

0 5 153
ay =10, ——, ——
" g’ 128 (19)
'l 15 8
b}"l:*_:_:_
37167 15

» A Five Stage Fourth Order RK Scheme

1357537059087 2016746695238
3550018686646 127580623’?668}

I 567301805773 2404267990393
a,= 0,

2091501179385 842570457699

[ 1432997174477 5161836677717 1720146321549
" 9575080441755 13612068292357 2090206949498 (20)

3134564353537 2277821191437
4481467310338 14882151754819



Dynamical Core: Numerical Implementation

MicroHH is discretized on Staggered Arakawa C-grid

A

==y

H)

.

Arakawa A-grid
Arakawa B-grid
Arakawa C-grid
Arakawa D-grid
Arakawa E-grid



Building Blocks for Spatial Discretization Based on

Finite Difference Method
(Morishini et al (1998), Vasilyev (2000)

2"d Order Interpolation Operators:

m_g_:l'.: L ¢I_%+I+k —I_qf;'l—l_lj:-f:-k
$i,j kPP = 5
(21)
Pi ke NP = 5

*The Superscript indicates
v’ The spatial order (2)
v’ The Direction (x)
v'The extra qualifier (L) is taken when using wider
stencil



Building Blocks for Spatial Discretization Based on

Finite Difference Method

The 2" order scheme for Gradient Operators:

F A2 8Pk = —x,
* i gk z+% —3
¢ o 52xL _ Pk~ %3
el 8Pk = -
i, J ok ivd T 43

The 4t order scheme for Gradient Operators:

—

Gi ik~ P ia
e N e N A R A Ny
16

(22)

(23)



Building Blocks for Spatial Discretization Based on
Finite Difference Method

The Biased 4" order version for points near bottom boundary:
—dzh

Pk Py g
quivjv;‘_% T 15@55}??} T >, i okt s —I_';‘ﬁ i Jokt s (24)
16

The centered and Baised 4% order scheme for Gradient Operators:

o¢
el I 5% (D) ik
i gk
B Nl N Rlhars RN Y (25)
x:—% —2?.1:'1._% —I—ZT,?CI._I_% _xi-l—%
and
dep dzb
— mye .
E'Z ik (G‘{’)z,;,k (26)

503 TP el T30l ~ Puitd




Building Blocks for Spatial Discretization Based on
Finite Difference Method

2"d Order Advection& Velocity Interpolation:

duch dvg o 2
it i A 52x(1¢¢ ) | +52F(ﬂ¢ F). .
ox lije  9Y lijx Wik hIk
— Iy —2x
_ Biad kit bk T -1k (27)
—2y — 2
e N NN
Yird — Y1
VU T
it — 5 (vz}’uh). |
ox | 1 2 Ik : (28)

. S s .y .
I+%1-f1-ﬂ: I_I_%hh;f I_%?j?;{ I_%‘.-J‘.-;'f
1
-



Building Blocks for Spatial Discretization Based on
Finite Difference Method

4th Order Advection & Velocity Interpolation :

du
¢ N 54;,;(”?;:)
ax ik LJ.k
—dx
- (HI_%+VF1-"{:¢I_E1-J1- ZTHI T j‘.-kqﬁ’l E‘.—fﬂ.— (29)
—4x —x
V2T g Bt ix ek P 3,0k) |
(‘Ii %—279: 1 +2?Ii+1g _IH—%)‘
v 9 _
. _52::: (ﬁyuﬁx)l |
a.l" I'.}j.l_f{ 8 Ii_j.}rr:f (30)
1
B _52;:1,(54}:@2@)
8 i?j?'&:



Building Blocks for Spatial Discretization Based on
Finite Difference Method

2"d & 4th Order Scheme for Diffusion Operator in x-direction

- PR (511 (.:,f:.)). |

ijk LJ.k
(31)

~ %54; (54;: (ﬁf’)). |

ijk LIk

2"d & 4th Order Scheme for Diffusion Operator on equidistant grid

}C¢,52x (52;; (qﬁ)) . k ¢¢'z 1. .k (iz;jig ﬁf’z—l—LjJ{ -
-‘Eqi:ﬁq-x (54:{ (';'f’))z -
-‘C
576(.&1) (t?f'z 35k — P01 +T83¢Pi—1 ik (33)

—1460¢; ;. + 78311 ;x —4Pito ik +Pits k)



Building Blocks for Spatial Discretization Based on
Finite Difference Method

Spl. Care near boundary for 4t Order Scheme for Diffusion using
Seven-Point Stencil

Figure: Schematic of the diffusion
discretization near the wall. The
GREEN node is the evaluation
point at the center of the first cell
above the wall, the RED nodes
are the stencil of the divergence
operator, and nodes
show the stencils of the four
gradient operators over which the
divergence is evaluated. WHITE
nodes indicate the extent of the
stencil.




Building Blocks for Spatial Discretization Based on
Finite Difference Method

Solution Methodology : Fractional Step Method of Chorin et al 1995
Stepl) Calculation of Intermediate Velocity

I—I—].

I-ti

Step2.1) Velocity Correction (requires pressures)

L Ars (E)
1‘-.-ir1' pl:l I uir?

Step2.2) Solve Pressure Poisson Equation derived from (35)

| t+1
aﬂx (pDHj) II‘.-JI'.-JE: nx; [ nx; ( p )] I (36)
= 3 200 — .
Al poJ 4l ok

t
t+1

H |”k (35)




Building Blocks for Spatial Discretization Based on
Finite Difference Method

Solution Methodology : Fractional Step Method of Chorin et al 1995

Step2.3) Taking Advantage of Periodicity of fields in x, y direction
use Fourier Transforms on (36) to get:

> 2 2
Yimp = Koy Tim ik — LnTim ik
+ 8" pod™ ()], 1

(37)

Where the l.h.s of (36) is denoted by: r (38)
and p/pg by: w

Further the modified wavenumbers are denoted by:
cos(3k Ax) — S4cos(2kAx) +783cos(kAx)
576(Ax)*

7 cos{kAx) 2 k2, =2
—kyy =12 s — 5
(Ax)®  (Ax) 1460
576(Ax)*’

(39)




Building Blocks for Spatial Discretization Based on
Finite Difference Method

Comments on Boundary Conditions:

=Lateral Boundaries are Periodic
"ROBIN TYPE Bottom and Top Boundaries Conditions

d¢
ap, +b—| =c¢ (40)
4z |,

Where a, b and c are constants.
»BC is Dirichlet when a=1, b=0
»BC is Neumann when a=0, b=1
»BC is Mixed type whena, b + 0



Building Blocks for Spatial Discretization Based on
Finite Difference Method

Comments on Boundary Conditions:

mGhost Cells are used in order to avoid the BAISED SCHEMES
for Interpolation or gradient operators near the walls.

Ghost Cells for Dirichlet BC:
— e — (41)
Py

Ghost Cells for Neumann BC:

o (42)
ﬁf»"_%— ::( z_%+z%)+¢‘>%



Building Blocks for Spatial Discretization Based on
Finite Difference Method

Comments on Boundary Conditions:

msGhost Cells are used in FOURTH order to avoid the BAISED
SCHEMES for Interpolation or gradient operators near the walls.

Ghost Cells for Dirichlet BC: S — 6';{:'% 4 .;f,%

_ 43
qf:'_% 2 (43)
—8c— 6 ,
';fi'_% c ';E’J'% +¢’>%,
Ghost Cells for Neumann BC:
23 —272_% —|—27'z% —23
$_1=-—C 7 +91,44)
23 —272_% —|-273% —Z3
b_y =3¢ 24 + o3



= Very Brief Detail on Parametrization (LES) in MicroHH

» Monin-Obukhov surface Model
*Constrained to rough surfaces and high Reynolds
Numbers, which is typical for atmospheric flows
Computes surface fluxes of horizontal momentum
components and scalars using Monin-Obukhov

Similarity Theory (Wyngaard, 2010)
»(Non-Dynamic) Smagorinksy-Lilly Subgrid Diffusion

»Warm 2-moment Bulk Microphysics



Validation of Dynamical Core - 1

Case A: Taylor Green Vortex

=2-Dimensional Unsteady Flow of
Decaying Vortex with Exact Solution

wix,z, t) =sin{Z2mx)cos(mz) f(t),
wix,z,t) =cos(2Zmx)sin{mz) Ft),

pix,z,t) = % (sin{dmx) + sin(dmz)) f(f)g,

where F(¢) = 8x2vt.



Use analytical form at t=0
and run for one vortex 10—4 -
rotation t=1 and compare
the result against the

o 106 -
analytical solution for = 10
V= (80072)~? &
10—3_
Error:
10—10_

S AxAZ| i g — brefis

—— Uz == W3 —— 2
—— U4 = W4 = Dy
—— Uiy == W4l =—d— Diis

All variables converge to the order 10~
of the scheme but for 4t order on
fine grids.

L | ! ! ! ! R
102 101
Ax [-]

Convergence of Spatial Discretization Error in 2D Taylor Green Vortex
=Subscript 2 indicates the 2" order scheme

=Subscript 4 the most accurate 4t order scheme

=Dashed Black Line is the reference for 2" order convergence

*The Dotted black lines indicate the 4t" order convergence



Validation of Dynamical Core - 2

Case B: Kinetic Energy Conservation and Time Accuracy

Time evolution of the
kinetic energy change AKE
during 1000 time units of
random noise advection for
the RK3 and RK4 time
integration schemes with
three different time steps
(a).

Kinetic energy change
convergence of the
temporal discretization for
the RK3 and RK4 schemes

(b).

00_(3)
—0.1—
0.2
? — RKZ: dt=10
w —0.3 4 =—— RK4: dr=10 K
04| == RE3:di=3 ‘x\
- | == RK4: dr=5 \
0.5 e RK3: dt=2.5 \
- RK4: dt=25
—06 | I I [ [ [
0 200 400 600 800 1000
1072
104
= 10-3
%1{)—6
107
. —— RK3 == (3]
10

—— REd smmeen 0(4)

| 100 | | - Ili}i
At[-]




Validation of Dynamical Core - 3

Case C: Turbulent Channel Flow (768 x 384 x 256)

015

044
024

0.0+

3 iy 31 1]
3 {v"v"} fot [-]

—024

—04

0.04 -
— 0,02 ]
2 000de 0]
X . ]
= 002 14
® 02 E
A o o0 g e
—0.04 1 il o o I T ] coe oo I %
A & T, —0.34 oo g a a T
—0.06 T T L T T T
10° 10t 10% 10 10! 10

z[-]

Budgets of Variances and Turbulence KE compared with against Moser et al (1999)’s
reference data at Re_=590 . HeightZ, variance and TKE budget are normalized

with x, /v and v/ui respectively.

(Van Heerwaarden et al, GMD, 10., 2017




Validation of Atmospheric LES - 1
Case D: Dry Convective Boundary Layer with Strong Inversion

Problem Description:

*A dry CBL that grows into a linearly stratified atmosphere with a very
strong capping inversion.

*The system is heated from the bottom by applying a constant Kinetic
heat flux of 0.24 Km/s

*The domain size is 5120 x 5120 x 2048 m
*Gravity damping has been applied in the top 25% of the domain.

eSimulation is run for 3 hrs. with three different spatial resolutions.



Validation of Atmospheric LES - 1

Case D: Dry Convective Boundary Layer with Strong Inversion

1600 Y ®)
*A well mixed layer with an 1400 |
overlaying capping inversion is seen 1200 ]
eLinear heat flux with —ve flux values =
in the entrainment zone e Fa
*Resolving BL poses challenge % 5001
Strong inversion at coarse level 6007
leads to unphysical overshoot of 400 -
potential temperature flux above Bl 200 -
top o
300 304 308 —02 02 06 1.0
7 [K] w0

(Van Heerwaarden et al, GMD, 10., 2017

Vertical Profiles of horizontally averaged potential
temperature (a) and normalized Kinematic heat flux. The
boundary depth Zi is the location of the maximum vertical

gradient in the potential temperature profile in (a)



(Van Heerwaarden et al, GMD, 10., 2017

Performance, efficiency and scaling

Performance: well optimized code

2.5- 5.5 times faster than DALES FUCLA-LES, similar performance to PAL M (for dry CEL)

GPU implementation: 230 speadup over single core, ~64 cores neaded tomatch performance GPLU
Memory effident: low storage Bunge-kutta schemes

Reqguires 2 2 20 field per prognostic variable + pressure (+ viscosity) + 4 x tempaorary field

Important for GPUS, where memory is limited

Scaleswell over 2 orders of magnitude increase in cores

DS of dry CEL:
) Strong sealing SupethIUIC i1 b Weak sealimg Fuquean
e 124 s10d= 1024 {0
101 @ 2043 w2048 1 1024 _ _‘__"————:_'_'_" - - - : T
- ] L0 T -
o —_
-%: g 0.8 ~——e
- 0.7
100 L T I
V- — —— —
e o |

# Processes[-] 327EE cores



Validation of Atmospheric LES - 2

Barbados Oceanographic and Meteorological Experiment
(The BOMEX Shallow Cumulus case)

(Van Heerwaarden et al, GMD, 10., 2017

=Produces non-precepitating shallow cumulus

5|t has large-scale cooling applied that represents radiation, as
well as large scale drying to allow the atmosphere to relax to a
steady state.

"|n addition a large scale vertical velocity is applied over a
certain height range to reproduce the approximate synoptic
conditions

sSimulation is run for 6 hrs

"All results compared well within 1 standard deviation of those
described in Siebesma et al 2003.



Validation of Atmospheric LES - 2

(Van Heerwaarden et al, GMD, 10., 2017

(c] (d)

|
r

1 — Dlomain
— 100 =100 % d0m 1 — Clmd
——— 10 10 9. dm — Core
04— — T T ] T T T 1 L B B BN |
0 2 4 & d 283 300 a0z angd 8 12 16 20 0 1 2 3 4
Area [%] & [K] at [ske] w [m 5]

Figure 10, BOMEX LES intercomparison (503). Shown are the domain mean, and conditionally sampled cloud (g = 0} and cloud core
{g] = Uand b — {&} = ) vertical profiles of {a) area coverage of cloud and cloud core, (b) liquid water potenti al temperature, {c) total specific
humidity, and (d) vertical velocity. The results are averaged over : = 18000-21600s, The shaded area denotes the mean +1 standard
deviation of the participating models from 503; the solid and dashed lines the results from MicroHH, using the original (solid} and a higher-

resolution {dashed} setup.



