A numerical study of Indian West coast fishery of the 'oil sardine' using food energetic model Faseela Hamza¹, Anju Mallissery¹, Vinu Valsala¹, B. R. Smitha², and Grinson George³ ¹Development of skilled Manpower in Earth System Sciences (DESK), Indian Institute of Tropical Meteorology, Pune, India, ² Center for Marine Living Resource and Ecosystem, Kochi, India, ³ Central Marine Fisheries Research Institute, Kochi, India

ABSTRACT

The annual landings of Indian west coast oil sardines (Sardinella longiceps) exhibit large scale variability with prolonged years of surplus or deficit without known reasons. Using S. longiceps landing at Kerala coast during 1961-2017, we have elucidated a link between the variability in landing with oceanic climate variables. The colder temperature and timely upwelling leading to nutrient enrichment in the surface waters and thereby availability of food to S. longiceps are found during surplus years. The fresh surface salinity and shoaling of MLD during the surplus years could lead to the aggregation of fish at shallow depths, which favours fishing. The present study found that the PDO and AMO have pronounced impacts on the landing than that previously reported with ENSO.

A fish bioenergetics model was indigenously developed by coupled with a lower ecosystem model to study the relationship between the climate variables and growth of fish. An ecosystem model called North Pacific Ecological Modeling for Understanding Regional Oceanography (NEMURO) was adapted and transformed for Indian Ocean conditions. The coupled model reproduced appropriate growth rate and wet-weight of Indian oil sardine and it is comparable with available observation.

INTRODUCTION

Indian oil sardine (S. longiceps) is the single largest contributor (8.8%) towards total landings (CMFRI, 2018). Even though, commercial level exploitation was confined mainly to the southwest coast, its distribution along the Indian coast is extending from Gujarat in the west coast to West Bengal in the east coat. It is economically important in addition to human consumption. This species is important as a critical forage for marine thus it provides a key linkage from lower trophic to upper trophic levels (Pikitch et al., 2014).

Globally, the fishery has shown wide fluctuations during the past 100 years. Changes in ecological parameters such as temperature and availability of food directly affect the physiology, growth, metabolic activities, reproduction and larval survival of this species. A fish bioenergetics model was coupled with a lower trophic level ecosystem model, to investigate the relationship between sea surface temperature (SST), prey density and growth of oil sardine.

Climate impact on the Indian oil sardine

DATA AND METHODOLOGY

Numerical model for Wet weight

Landing data of S. longiceps for a period from 1961 to 2017 (Kripa et al., 2018)

Availability of food (<u>http://data.ceda.ac.uk/neodc</u>) Ο On monthly scale for the period of 1998 to 2016, at a spatial resolution of $4 \text{ km} \times 4 \text{ km}$.

Salinity and Temperature

(http://www.metoffice.gov.uk/hadobs/en4), Monthly mean data (EN.4.2.1) with a vertical resolution of 10 m and at $1^{\circ} \times 1^{\circ}$ spatial resolution

Mixed layer depth Ο

Ο

(http://apdrc.soest.hawaii.edu/data/data.php) at resolution $0.5^{\circ} \times 0.5^{\circ}$ spatial grid Wind stress curl (as a measure of upwelling, Ο https://apps.ecmwf.int), Monthly means of zonal and meridional winds at 10 m level (u10 and v10) at a resolution of $0.25^{\circ} \times 0.25^{\circ}$ grid.

Rate of change of wet weight of Oil sardine is

$$\frac{\mathrm{d}\mathbf{W}_{i}}{\mathrm{d}t} = \left[\mathbf{C}_{i} - (\mathbf{R}_{i} + \mathbf{S}_{i} + \mathbf{E}\mathbf{G}_{i} + \mathbf{E}\mathbf{X}_{i})\right] \frac{\mathrm{CAL}_{z}}{\mathrm{CAL}_{f}} \mathbf{W}_{i} - \mathrm{EGG}_{i} \mathbf{W}_{i},$$

 W_i is the wet weight of the fish in grams, C_i is the consumption, EX_i is the excretion or losses of nitrogenous wastes, EG_i is the egestion, R_i is the respiration or losses through metabolism, S_i is the specific dynamic action, EGG_i the fraction of body weight lost on the day of spawning, CAL_z & CAL_f are the energy density (J) of zooplankton (J g zooplankton⁻¹) and of sardine (J g fish⁻¹).

RESULTS AND DISCUSSIONS

Climate impacts on the landings of oil sardine over the Kerala coast

Numerical simulations of wet weight of oil sardine in the Indian west coast

temperature and availability of food

Observational ranges of wet-weight of oil sardine		
Location (observation)	Weight (g)	Reference
Karnataka	30.12 to 85.26	Deshmugh et al., 2016
Goa	31 to 86.86	Deshmugh et al., 2016
Maharashtra	11.4 to 86.82	Sha et al., 2019
References		

CMFRI (2018) Annual Report 2017-18. Central Marine Fisheries Research Deshmukh AV, Sumod KS, Kumar KV et al. (2016) Some aspects of spawning season and biology of Indian Oil sardine, Sardinella longiceps along, Goa-Karwar Kripa V, Mohamed KS, Koya KP et al. (2018) Overfishing and climate drives changes in biology and recruitment of the Indian oil sardine Sardinella longiceps in Pikitch EK, Rountos KJ, Essington TE et al. (2014) The global contribution of Shah TH, Chakraborty SK, Jaiswar AK et al. (2019) Stock assessment of oil sardine Sardinella longiceps Valenciennes 1847 (Clupeiformes: Clupeidae) in the northern Arabian Sea. Indian J Geomarine Sciences 48:613-621