Suites of physics packages in CFS and GFS
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The Stochastic MultiCloud Model Parameterization calibrated with radar observation

Data and Methodology

Al memaenaeansecnss || \Me have trained the model by using Dynamics of the Madden-Julian Oscillation (DYNAMO) radar observations and followed Markov-

S nah, chain process to generate key parameters like transition probability, required for CFSMCM.

4 types of plumes (SC,C,D,S) according to their detrainment

5 shatlow camaius s near e wasewina meson, || ClIMALE SIMulations of the CFSMCM iIs done and 25 year run iIs made and last 20years are analyzed.

v"  Congestus detrain above the trade wind inversion and

___________ below or near the freezing level
>f,,\1 v"  Deep detraining above this level
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By construction, the proposed
framework englobes both sallow - =
and deep convection, as well as w1
mid-level congestus clouds.
Ideally, the stochastic model is
some kind of shell that permits -
the shallow and deep convection [
schemes to communicate with
each other.
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An order parameter g, ,, that takes values 0,1,2,3, or 4 at
eachsiten; m

(o} REAS, RMSE=12.50, CC=0.526%

QO  Forn; m fixed, let Py be the number of plumes with a I0HN - J0ON -
detrainment level zp, = 2z, originating over the lattice site
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v" [, be the associated density functions
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The steady state equation of conservation of llWe have the bulk mass flux equation,
moist static energy (h.) of a rising plume. Ay
dh. M(z) = AI M, (z)F(A)dA,
0

dz‘ =Ah—h),z, <z < 2zp,

level. lay Convective rainfall ; R3AS, Mean=2.5% mm/day (a) Large scale rainfall : RSAS, Mean=0.73 mm/day
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where M; (z) is the mass flux of the plume of type 4, i.e, a plume with a constant (b) Convective rdinfall @ SMOM—DTYHAMD, Mean=1.44 (b} Large zcale rainfall @ SMCM—-DOvHAMO, Mean=2.75
entrainment rate A, given by

A quick integration of the above ODE and (b} SMCM—-DYMAMD, RMSE=13.52, CC=0.5274

M,e?z %) 7 <z<z
then using the mean value approximation M(z) =4{"? dos o :
et € PP A 0, otherwise. JOM
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A=— ilog 1-— o il i Here z, and z, represent the level of cloud base and the level at which the type-4 |
Az ho — h% plume detrains and M,, is the cloud base mass flux. F(A4) is the plume probability EQ

density given by
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To complete the definition of the cloud top N2 [Nscfsc(A) + Nefe(2) + Nafa(2)] 305 4

distributions (f;(4), for j = sc,c,d and s, in with .., f., f4 are plume distributions of shallow cumulus, congestus, and deep
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where hy = h (@) and Vz = zp — z;,
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Summary and Conclusions:

the schematic above) we need to specify the Bcumulonimbus cloud-types, respectively in the schematic above, while 4, is the
means and standard distribution parameters Mentrainment rate of plumes that detrain at level z.
A; and a;. To do so we set,

As for the steady state plume model, we assume that the bulk mass flux satisfies the
Ase = 85cAipc conservation equation

A= Sk NI s eohars:e i) and 805y are th btk gntramment and detrainment rates, respectively.

B R TTp T ———— o . > Global distribution of low-level cloud is improved and it is
PR S I o R or o also with better agreement with observational analysis, which
i Vs 2051 505 | IS Inaccurate In RSAS.

’ e 120 150 1zow oo 0 » Convective and Large-Scale rainfall are improved in SMCM
T T T as compared to RSAS.

Impact of modified precipitation conversion rate in SAS convection scheme in CFS and GFS

The modified cloud condensate to precipitation conversion parameter (C,) JJAS mean precipitation (mm/day) in CFSv2 Convective and large-scale rainfall mm/day) in CFSv2
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Use PDF to close higher- | A ¢ Select PDF from given

> Allows to study subset of processes or single process only.
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the column physics being tested, or to problems with the
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Diagnose cloud fraction,
Golaz et al. (2002a) liquid water from PDF
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observations that are used as input.

» Once a parameterization has passed its SCM tests, it can
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Feed subcolumns into physical parameterizations and compute process rate tendencies

erformed by a microphysics scheme
(P y' Py ) Taylor Diagram for JJAS climatological mean

Rainfall (mm/day)
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In a nutshell, the SCM code performs the following:
Read in an initial profile and the forcing data

Create a vertical grid and interpolate the initial profile and forcing data to it

Initialize the physics suite

g

Perform the time integration, applying forcing and calling the physics suite
each time step

Average microphysics tendencies from each subcolumn to form a grid box average
profile
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