Process-based and Data-based estimates of variable community compensation
depth for ocean BGC model with special reference to Indian Ocean
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T bstract T M Methodology 1: Process-based estimates of Zc via Biological Parameterization
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Ocean Carbon-Cycle Model Inter-comparison Project (OCMIP-II) provides accurate rendition 0
of the annual mean carbon cycle for the global ocean. However it comes with a penalty of seasonal N
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method. The biological parameterization is based on Chl-a dependent spatially and temporally varying
Zc and the other is a statistical optimization by a cyclo-stationary Bayesian inversion method using
surface ocean pCO, and phosphate data.

In the first method, by utilizing the Chl-a attenuated incoming solar radiation, a depth where
solar radiation reaches 10 w m~ has been proposed as a method to obtain spatially and temporally
varying Zc. The spatio-temporal varying Zc has improved the seasonality of the simulated CO, fluxes,
surface ocean pCO,, export and new production in the major upwelling zones of Indian Ocean. o
Analysis proved that better representation of biological exports and the modified nutrient profiles in sors 2
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Figure 7: prior error variance-covariance of Zc (i.e. Cz). Units are in m?. Figure 8: (a) pCO, observation error variance-
covariance matrix. The principle diagonal elements represent the variances of pCO, observations of each oceanic

the model supported the seasonal correction in the OCMIP —II protocol. This scheme captured the . . . . . .

carbon cycle response to episodic upwelling with the related biological processes in the Indian Ocean. Results tegion for each month and the off diagonal elements represents their cross co-variances. The mosaic of size 12 x 12
In th d h f CO d oh h b . has b Tized " represents the variance — co-variances of pCO, within each oceanic region but with different climatological months.
n.t ¢ second attempt the 51.11' ace p O, and p osp. ate o servatfons. as .een utilized to 1n. cr (a) constZe Units are in (uatm)?. (b) PO, observation error variance-covariance matrix. Units are in (mmolm)>.

the spatially and temporally varying Zc via a cyclo-stationary Bayesian inversion method. Indian

Ocean has been divided into 8 bioprovinces with 12 months of seasonality for which a prior Zc of 75m Results
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At the community compensation depth, the NCP is zero B . . 1504 T 1N R Figure 9. Comparison of compensation depth obtained from biological parameterization (varZc) and data based
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Figure 5: Annual mean bias of model phosphate when

Ocean Tracer Transport Model (OTTM: Valsala et. al., 2008, 2010) coupled with OCMIP - 11 Figure 4:The strength of the biological pump (BP, mpared with climatological observational data (a) for -
biogeochemical model (Najjar & Ort, 1998, Najjar et. al., 2007) black lines) and solubility pump (SP, red lines) from ~ “CTPOFES W R STMEDOSEH ORSEVATO . 0
S ) ) ‘ ) POt . constZc and varZe simulations for Western Arabian constZc and (b) for varZc simulations. Corresponding annual 20°
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A gradient of the cost function (J) is attempted to minimize by optimally estimating the varZc using s o
" Vertical Mixing based on KPP (Large et. al., 1994) the surface ocean pCO, and phosphate as observational constraints. (Tarantola, 1987, Enting, et. al., | T T T T T T mm e T T T T T
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* Eddy induced transport parameterization (Gent and McWilliams, 1990) 1995, Kalnay, 2006, Lewis. et. al., 2000).
" Jsopycnal tracer diffusion parameterization (Redi, 1982) Figure 10. (a) RMSE of CO, flux from VarZc (Sreeush et al., 2018); (b) RMSE difference between CO, flux ¢, »coz)
JZ)=D-GZ)TC, ' (D-GZ)T + (Z.-Z)'C ' (Z.-Z )T . : 0
c c D c c o z c o and CO, flux,;, (c) same as (b) but for CO, flux o,z ros) (d) RMSE difference between CO, flux . po4) and CO,
2. Biogeochemical Model . . . . . . flux onzqpcoz)s (€) same as (a), but for pCOy (f) same as (b), but for pCO, o,z pcoz) (&) same as (c), but for
The linear Bayesian theory suggests that there exist an optimal values of Zc wherein the observations PCO,opzpon; () same as (d) but for pCO,, Units are in molm2yr for CO, flux and patm for pCO,.
*The biogeochemical model is based on OCMIP-II protocol with a Nutrient restoration approach, and model has minimum mismatch when # ' :
having Phosphate as the basic currency. o ] Conclusions
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"The production of biomass in the model using the nutrient restoring approach is given by [ZOPt =Z,t G Cpn G+ C1.GCp (D -GZ) ] + A spatially and temporally varying community compensation depth (varZc) in ocean carbon
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L difference from observational datasets and control | 1x + Both process based and data based estimates retrieves a consistent varZc with slight variation in
Ppmd =0; [P0, = [PO,]*;Z > Ic run climatology for each month over each region (96 magnitude.
7 Offline ) x 1). 0° 4+ T'he importance of having a seasonal balance in model export and new production is highlighted
"Air-sea CO, flux in the model 18 Ocean Prognostic G represents a two dimensional sensitivity matrix + varZc enhances the model export production by approx 70% as compared to constant Zc.
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pCO, is calculated in the model by:
DIC] (H]? + Cp is model-data mismatch error variance-covariance | s Py + The study also highlights the importance of resolving interior ocean biogeochemical dynamics
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