RR-01

ENERGETIC CONSISTENCY OF TRUNCATED MODELL

by

G. C. Asnani

INDIAN INSTITUTE OF TROPICAL METEOROLOGY

Ramdurg House Ganeshkhi**n**d Road, Poona-5, India

25 August 1971

"Energetic consistency of truncated models"

by

G.C.Asnani

Indian Institute of Tropical Meteorology
Poona, India.

RR-1

- 1. After the classical work of Lorenz (1960), it is well-established in the field of meteorology that certain terms or groups of terms in the vorticity and divergence equations should either be retained or dropped together to achieve "energetic consistency". This has led to an hierarchy of models beginning with complete vorticity and divergence equation model and ending with quasi-grostrophic model. By integration over closed horizontal surface, we show that the energetic consistency of the various truncated models is of more restricted type than would appear from the form which it takes for the atmospheric mass as a whole. In general, these truncated models create fictitious cancellations of vertical divergences of energy fluxes at each level and hence vertical coupling of energy in these truncated models is defective.
- 2. Equation of quasi-static frictionless horizontal motion is

$$\frac{d\vec{V}}{dt} + f \vec{k} \times \vec{V} + \nabla \phi = 0 \qquad ... \qquad (1)$$

 \vec{V} is horizontal velocity vector; ∇ is horizontal operator and $\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \vec{V} \cdot \nabla + \omega \frac{\partial}{\partial p}$ is total individual derivative.

By performing ∇ and $\vec{k} \cdot \nabla = \vec{k}$ operations on this equation, we get the well-known divergence and vorticity equations:

$$\frac{\partial D}{\partial t}^{3} + V_{2} \cdot \nabla D_{3} + \vec{V}_{3} \cdot \nabla D_{3} + \omega_{3} \frac{\partial D}{\partial p}^{3} + D_{3}^{2} + 2J (v_{2}, u_{2}) + + 2J (v_{3}, u_{3}) + 2J (v_{2}, u_{3}) + 2J (v_{3}, u_{2}) - f\zeta_{2} + u_{2}\beta + + u_{3}\beta + \nabla \omega_{3} \cdot \frac{\partial \vec{V}_{3}}{\partial p} + \nabla \omega_{3} \cdot \frac{\partial \vec{V}_{3}}{\partial p} + \nabla^{2}\phi_{1} = 0 \quad ... \quad (2)$$

$$\frac{\partial \zeta_{2}}{\partial t} + \vec{V}_{2} \cdot \nabla \zeta_{2} + \vec{V}_{3} \cdot \nabla \zeta_{2} + \omega_{3} \frac{\partial \zeta_{2}}{\partial p} + \nabla_{2} \beta + \nabla_{3} \beta + f D_{3} + + \zeta_{2} D_{3} + J (\omega_{3}, \frac{\partial \chi_{3}}{\partial p}) + \nabla \omega_{3} \cdot \nabla \frac{\partial \psi_{2}}{\partial p} = 0 \qquad (3)$$

Following Lorenz (1960), we have used subscript $_1$ to indicate a physical property and subscripts $_2$ and $_3$ to indicate quantities derived from stream-function ψ_2 and velocity potential χ_3 respectively.

We multiply each term of the vorticity equation by $-\psi_2$ and each term of divergence equation by $-\chi_3$ and integrate over the earth's closed horizontal spherical surface. We do not perform vertical integration and in this respect deviate from the analysis of Lorenz (1960). We freely use the property that divergence of a horizontal vector and horizontal Jacobian of two scalars vanish when integrated over closed horizontal surface. The terms which result after some simple manipulations are shown in Table 1. We use the notation

$$k_2 = \frac{\vec{V}_2 \cdot \vec{V}_2}{2}$$
; $k_3 = \frac{\vec{V}_3 \cdot \vec{V}_3}{2}$; $\vec{V} = \vec{V}_2 + \vec{V}_3$

3. We now have from vorticity and divergence equations

$$\int_{S} \left\{ \frac{\partial k_{2}}{\partial \dot{v}}^{2} + \eta \nabla \psi_{2} \cdot \nabla \chi_{3} + \omega_{3} \left(\frac{\partial k_{2}}{\partial p}^{2} + \vec{V}_{2} \cdot \frac{\partial \vec{V}}{\partial p}^{3} \right) \right\} dS = 0$$

$$\int_{S} \left\{ \frac{\partial k_{3}}{\partial \dot{v}}^{3} - \eta \nabla \psi_{2} \cdot \nabla \chi_{3} + \omega_{3} \left(\frac{\partial k_{3}}{\partial p}^{3} + \vec{V}_{3} \cdot \frac{\partial \vec{V}}{\partial p}^{2} \right) + \vec{V} \cdot \nabla \left(\vec{V}_{2} \cdot \vec{V}_{3} + k_{2} + k_{3} + \phi_{4} \right) \right\} dS = 0$$

$$\int_{S} \left\{ \frac{d}{dt} \left(k_2 + k_3 + \vec{V}_2 \cdot \vec{V}_3 \right) + \vec{V} \cdot \nabla \phi_1 \right\} dS = 0$$

$$\int_{S} \left(\frac{d}{dt} \frac{\vec{V}^2}{2} + \vec{V} \cdot \nabla \phi_1 \right) dS = 0 \qquad ... \qquad (4)$$

This is the dynamically consistent energy equation which we should expect straight from the equation of motion (1) after its dot-multiplication by \vec{V} . It can be shown that if we further integrate equation (4) with respect to \vec{p} in the vertical, we shall get for adiabatic frictionless flow:

$$\frac{\partial}{\partial t} (P_1 + I_1 + K_2 + K_3) = 0$$
 ... (5)

where

$$P_1 = \int gz dM$$

$$I_1 = \int\limits_{M} C_{V} T dM$$

$$K_2 = \int_{M} \frac{\vec{v}^2}{2} dM$$

$$K_3 = \int_{M} \frac{\vec{V}_3^2}{2} dM$$

$$K = \int_{M} \frac{\vec{v}^{2}}{2} dM$$

If energy equation (4) is satisfied in each plane, then it can be shown that energy equation (5) is necessarily satisfied over the atmospheric mass as a whole. But the converse is not true. What the truncated models

do is to satisfy (5) with omission of K_3 , while they satisfy (4) in more restricted forms. For example, (3,3) terms in divergence equation yield $\frac{\partial}{\partial p} (\omega_3 \ k_3)$; (2,3) terms of divergence equation and (3,3) terms of vorticity equation cumulatively yield $\frac{\partial}{\partial p} \left(\omega_3 \ (\mathring{V}_2 \ .\mathring{V}_3 \) \right)$; (2,2) terms in divergence equation and (2,3) terms in vorticity equation together yield $\frac{\partial}{\partial p} (\omega_3 \ k_2)$. Now the vertical divergence of these vertical energy flux terms need not vanish at each horizontal level, although on vertical integration w.r.t. pressure, these terms make zero contribution on assumption of $\omega_3 = 0$ at top and bottom of the atmosphere. As such, these truncated models create fictitious cancellations of vertical divergence of energy fluxes at each level and hence vertical coupling of energy in these truncated models is defective. The result of integration over entire mass of the atmosphere is also shown in Table 1.

- 4. We shall now examine the energetics of the various truncated models in respect of the four energy equations:
 - i) from vorticity equation in a plane,
 - ii) from divergence equation in a plane,
 - iii) from their combination in a plane and
 - iv) from their combination over the entire mass of the atmosphere.
- 4.1 Truncated Model I : Omit $\frac{\partial D}{\partial t}$ from divergence equation, retaining all the terms of the vorticity equation.

4.2 Truncated Model II: Further, omit $u_3\beta$ and (3,3) terms from divergence equation, still retaining all the terms of the vorticity equation. Then

$$\frac{\partial}{\partial t}$$
 (P₁ + I₁ + K₂) = 0

4.3 Truncated Model III: Further, omit (2,3) terms from divergence equation and $J(\omega_3, \frac{\partial \chi_3}{\partial p})$ terms from vorticity equation. Then the divergence equation becomes the balance equation. Now the divergence and vorticity equations are:

2J
$$(v_2, u_2) + (u_2\beta - f\zeta_2) + \nabla^2 \phi_1 = 0$$

$$\frac{\Im \zeta^2}{\partial t} + (\vec{V}_2 \cdot \nabla \zeta_2 + \nabla_2 \beta) + (\vec{V}_3 \cdot \nabla \zeta_2 + \zeta_2 D_3 + \omega_3 \frac{\partial \zeta^2}{\partial p} + \nabla \omega_3 \cdot \nabla \frac{\partial \psi_2}{\partial p}) + (\nabla_3 \beta + f D_3) = 0$$

The four energy equations become :

i)
$$\int_{S} \left(\frac{\partial k}{\partial \bar{b}}^{2} + \eta \nabla \psi_{2} \cdot \nabla \chi_{3} + \omega_{3} \frac{\partial k}{\partial p}^{2} \right) dS = 0$$

$$\begin{array}{ll} \text{ii)} & \int \left(-\eta \ \nabla \psi_2 . \nabla \chi_3 \ + \vec{V} . \vec{V} k_2 + \vec{V} . \nabla \phi_1 \ \right) \ dS = 0 \\ \\ \text{iii)} & \int \left[\left(\frac{d}{dt} \, \frac{\vec{V}^2}{2} + \vec{V} . \nabla \phi_1 \ \right) - \left(\frac{\partial k_3}{\partial t} + \frac{\partial}{\partial p} \left(\omega_3 \, k_3 \, + \omega_3 \, \vec{V}_2 \, \vec{V}_3 \ \right) \right] \right] \ dS = 0 \\ \\ \text{iv)} & \frac{\partial}{\partial t} \left(P_1 + I_1 + k_2 \right) = 0 \end{array}$$

4.4 Truncated model IV: Further, omit 2J (v2, u2) term from the divergence equation and (2, 3) terms from vorticity equation. Then the divergence and vorticity equations become

$$u_2\beta - f\zeta_2 + \nabla^2\phi_1 = 0$$

$$\frac{\partial \zeta_2}{\partial t} + \vec{\nabla}_2 \cdot \nabla \zeta_2 + \nabla_2\beta + \nabla_3\beta + f D_3 = 0$$

The four energy equations become :

i)
$$\int \left(\frac{\partial k}{\partial t}^2 + f \nabla \psi_2 \cdot \nabla \chi_3 \right) dS = 0$$
S

ii)
$$\int \left(-f \nabla \psi_2 \cdot \nabla \chi_3 + \vec{V} \cdot \nabla \phi_1 \right) dS = 0$$

iii)
$$\int_{S} \left[\left(\frac{d}{dt} \frac{\vec{V}^{2}}{2} + \vec{V} \cdot \nabla \phi_{1} \right) - \left(\frac{\partial k}{\partial t^{3}} + \frac{\partial}{\partial p} \left(\omega_{3} k_{3} + \omega_{3} \vec{V}_{2} \cdot \vec{V}_{3} + \omega_{3} k_{2} \right) \right] \right] dS = 0$$

$$iv) \frac{\partial}{\partial t} \left(P_{1} + I_{1} + k_{2} \right) = 0$$

4.5 Truncated Model V: Further, neglect variation of f in dealing with expression $(u_2\beta-f\zeta_2)$ in divergence equation and $(v_3\beta+fD_3)$ in vorticity equation. Now the divergence and vorticity equations are:

$$-f_0\zeta_2 + \nabla^2\phi_1 = 0$$

$$\frac{\partial\zeta_2}{\partial t} + \vec{V}_2 \cdot \nabla\zeta_2 + \nabla_2\beta + f_0 D_3 = 0$$

The four energy equations are the same as for Truncated Model-IV above.

Acknowledgements

I have greatly profited from discussions with my colleagues Dr.Sreerama Murty and Mr.C.M.Dixit.

REFERENCES

Lorenz, E.N.

1960

"Energy and NWP"
Tellus, 12, 364-373

IIIM/ROMAYOR/SGG/1971.

 $-\oint_{S} \chi_{3}(\text{Divergence eq.}) ds$ $-\oint_{S} \psi_{2}(\text{Vorticity eq.}) ds$

ys 12 (Vorticity eq.) ds							
	Divergence	Equation	Vorticity	Equation	Serial		of group after
	Term of Divergence Eq.	contribution to $\frac{\partial k}{\partial t}$	Term of vorticity Eq.	contribution to $\frac{\partial k}{\partial t}$	Numbe	closed horizontal	· entire mass of
	9D3	∂ k₃ ∂t	<u> </u>	3k2	group	surface $\oint_{S} \frac{\partial}{\partial t} (k_2 + k_3) ds$	atmosphere
			W2. ∠25	0	2		3 (K2+K3)
	u ₃ β	0	ν ₂ β	0		0	0
	V ₃ · ∇ D ₃	$\chi_3 D_3^2 - 2 W \cdot \nabla k_3$		And process have proceedings and process process and the contract of the contr	3	0	0
	$V_3 \cdot \nabla D_3$ D_3^2	$-x_3D_3^2$				$\oint_{S} (\mathbb{W} \cdot \nabla k_3 + \omega_3 \frac{\partial k_3}{\partial p}) ds$	
	$\omega_3 \frac{\partial p}{\partial D_3}$	$3 \vee \cdot \nabla k_3$ $- \chi_3 \omega_3 \frac{\partial D_3}{\partial P}$			4	Or	0
10	$\triangle m^3 \cdot \frac{9b}{9/\sqrt{3}}$	$\chi_3 \omega_3 \frac{\partial D_3}{\partial P} + \omega_3 \frac{\partial k_3}{\partial P}$				$ \oint \frac{\partial}{\partial p} (\omega_3 k_3) ds $	
	V ₂ · ∇D ₃	- W· ▽ (W ₂ ·W ₃)				$\int_{S} \left\{ \mathbb{V} \cdot \nabla (\mathbb{V}_{2} \cdot \mathbb{V}_{3}) \right\}$	
	$\Delta m^3 \cdot \frac{9b}{9/5}$	$\omega^{3}N^{3} \cdot \frac{9b}{9N5}$	$J(\omega_3, \frac{\partial \chi_3}{\partial \rho})$	ω ₃ W ₂ · <u> </u>	5	$+\omega_3\frac{\partial}{\partial}(\mathbb{V}_2\cdot\mathbb{V}_3)$ ds	0
	ab ab	96			9	$\begin{cases} \frac{\partial}{\partial p} \left\{ \omega_3(\mathbb{V}_2 \cdot \mathbb{V}_3) \right\} ds \end{cases}$	
	2 J(v ₂ ,u ₂)	V. ¬k2 - 5 ¬ 42. ¬ 23	$V_3 \cdot \nabla \xi_2$ $\xi_2 D_3$	Ψ ₂ ξ ₂ D ₃ +ξ ₂ ¬Ψ· νχ ₃ -Ψ ₂ ξ ₂ D ₃	9	V. ∇k2+W3 3p ds	
		w · Vn2 = 5 V 1/2 V Z3	$\omega_3 \frac{\partial \xi_2}{\partial P}$	$-4 \frac{2}{2} \frac{\omega_3}{3} \frac{3 \xi_2}{3 p}$	6	Or	0
		7784 77	$\triangle m^2 \cdot \triangle \frac{9b}{9h^5}$	$\psi_2 \omega_3 \frac{\partial \xi_2}{\partial p} + \omega_3 \frac{\partial k_2}{\partial p}$	5	$\int \frac{\partial}{\partial p} (\omega_3 k_2) ds$	
	u ₂ β	$-\chi_3^{}$ u ₂ β	v ₃ β	-42 v3 B	7	To the second se	
1		$\chi_3^{\alpha_2}\beta - f \nabla \psi_2 \cdot \nabla \chi_3$	f D ₃	$\Psi_2 \vee_3 \beta + f \nabla \Psi_2 \cdot \nabla \chi_3$	7	0	0
	$\nabla^2 \phi_1$	W · ∇ φ,			8 9	$\int_{S} V \cdot \nabla \phi_{1} ds$	3 (P,+I,)
	∇·IF	W3 · IF	lk.∀× IF	W ₂ · IF	9 9	W·IF ds	∮W · IF dM
· M							