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List of Symbols

a = acceleration of the rigid support
£ = yiscous force acting on a mass m
X = stiffness factor of the spring
H(S) = Laplace transform of the system transfer function
x = space cordinate t = time cordinate = :'“"‘ m*}‘:\\
X(8) = Laplace transform of the system respo?ég?: i “"'-T_;:B
U(t) = unit impulse function 3 \
q = instantaneous electric charge 3 : f?£3{3
I = instantaneous electric current _
Qg (;ﬂ A velocity vector where i =1, 2, 3'2
k = wave number vector r
z (ﬁ. +) = another random vector fﬁ/

aZ,(k,t) = differential of 2 (k, t), =1, 2, 3

azg*(ksﬁ) = comfex conjugate of dzi(iat)
S

¢ij(;) = sPectral tensor density of a homogeneous isotropic velocity
field,
¢ij(£) = transverse component of ¢, (ﬂ)
nij(ﬁ) = longitudinal compcnent of ¢ ij(ﬁ)
€ = mean rate of digsipation of energy
v = coefficient of viscosity of the medium

B= Eriaj%zrdimensionléss variable representing the damping ratio

l .
K 2
@ '-—'( ") =undampedn natural frequency of the system

n m
ﬂm = frequency at which the quantity ELgﬁrékl meximum

. = gtandard deviation of the longitudinal component of velocity
ws () = output function from the L, C, R circuit
¢s (w) = spectral density of output function
e (@) = spectral density of output function when the longitudinal

component of velocity function is fed at input

ne = constant upper limit of no(w)

t4 = time at which the input random function starts

0 = gpectral density of input longitudinal veloeity component
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LEGEND

& gimple version of an accelerometer
a - rigid support,
b — mass m,

& - spring of stiffness factor K
A gsewies L, C, R circuit

The transient response of the L, C, R, circuit ta
a unit-impulse. #Along the abeissa are plotted the

dimensionless variable @, + and along the ordinate

21
the amplitude ratic. (After Gill, J.C, Pelegrin, M.J.,
and Decanline, P. 1959 (2)).

Representation of a random function by a series of
impulses.



Simulaticn cf the spectral characteristics of the lewer atmscphere by a

simple electrical model and using it for prediction

by

Subroto Sinha

Summary

This paper attempts to bring cut the broad features of the spectral
characteristics of the lowest 300 metres of the atmosphere, ag cobserved by
Ivsnov and Ordanovich [!+], The various atmospheric parameters sre simulated
by the elemenis of a mechanical system which ig then ccnverted into its
eleztriz analog., The magnitude and the frequency of carurrence of the
rescnanse velue of the response of the system are discussed, using the
differential equation representing the system. The compcnents of the wind
velcsiﬁy, treated as a random function of time, is fed at the input of the
system, and a scheme is put forward for predicting future values of the

random funotion.
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4, Introducticn

In E@] the authors have presented the resﬁlts of their investigaticns
of the wind veloecity spectrum for unstable stratification in the lower 300-
meter lagyer of the atmosphere, Their main aim was to study the low frequency
range of the spectrum, upto periods of the order of 30 minutegs. They there-

fore used a filter whbse transfer function had the form :-

-

BH(w) 2 VT

2

where o is the angular frequency and 7+ is the time-constant, which in
their measurements was equal to approximately 60 secs. The high frequency
components were thus filtered out and thereby the specific weight of the low

‘frequency components increased in total energy.

The measurements were carrisd out on a tall meteorological tower of
the Institute of Applied Geophysics in Obninsk. A set of propeller anemo-
meters of the M-49 type were used to méasure the longitudinal component.,
Bivanes, to measure the vertical and horizontal angles which the wind
velocity vector forms with the mean direction of air flow, were used to
obtain the vertical.and transverse components., The longitudiﬁal component
sensors were mounted on 12 levels, and the Bivanes at 8 levels encompassing
the lower 300-meter layer of the atmosphere including the L and 8 m levels

for which measurements were carried out en & small meteorological tower,

The normalized spectral densities obtained from these measurements
showed the presence of two pronounced maxima. The first of these was

greater in magnitude and corresponded to a period of 15-20 mins, The



authcrs ascribed this maximum as béing related‘to the actien of bucyancy
forces. The second maximum which accurred only feor the 1ongitudinal
compcnent, had a period of 5-8 mins. This was related to the action of
frictionsl forces. The observations were divided into four series,
categorised by the Monin-Obukhov length, L, which had the values, =150,
1000, -6, -12, respectively. When, 'L' had the value 1000, the first

maximum shifted towards higher frequency.

Observation made earlier by Wébb [?]; had also shown similar
features of the energy spectrum, with a majér peak at fhe low frequency
and followed by a number of secondary peaks of much smaller magnitﬁdes, at
the higher frequencies. :Thi; study was made for an altitude of 29 m. under
diffe;ént wind condifions, without the wuse of any high-fregquency filter.
Representation :- Thg velocity vector ui(;, t)lcah be repregented in thgl

form of a Fourier. Stieltjes' integral as :-

; = [ 2 % = L
uy (x, £) = _/e Kex dzi(k, %) (41

=3 =3
The increments dZ; (%, t) at any value of k depends on the particular

-3 )
reslization of the velocity distribution such that dZ,* (k/t) az; (k",t)

A h -5 i
is zero unless k' and k" are equal. The spectral density is given by :

= J

-qu,.j(fé Jake = mt E ) w8 L (4:2)

-
the integration being taken over all k space. The spectral densities cf

the transverse and longitudinal components of velocity in a homopeneous

compressible fluid has been shown by Moyal B] to be given by :-
s (k) = ¢ijlk) = gyk) +mj (k)

B



The mean rate of disgipation of energy by viscosity was shown by

Moyal [3] to be :-

e j[[_ ¢ (k) + 4 (k) }
= 81 v jr{_ o (k) + 5 7

o

e
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2. Formulation of the Model

_The characterigtics of the lower atmosphere show that its behaviour

is governed by three major parameters:-

(a) The lapse-rate of the unstable atmosphere and its deviation
from the adiabatic lapse-rate. Thig determines the
beoyancy forces which will act on an agir parcel.

(b) The viscosity of the medium, which determines the frictional
force acting on the air parcel,

(¢) The acceleration of the air parcel which determines the
inertial force on it.

This behaviour may be likened to a mechanical sggstem which is a
gimplified version of an accelerometer, shown in Fig.(1). 1 e consigts of
a mass 'm' in horizontal rectilinear motion along the x-direction, with
respect to a support, to which it is attached by means of a spring., The
spring develops a force proportional to its elongation., The viscosity of
the medium develops a force proportional to the velocity of the mess
relative to its support. The motion of the mass, relative to its support,

is represented by the equation :-

d’x = dx
A I: i T + ma - - (2.1)

When the support is excited by an unit impulse, the above equation may be



rewritten as -

2
%:;}5( w.o 2 ﬁwné“’a-?tc + wna =) = wnz- U('t) e (2i2)

where the unit-impulse is written in the particular form for reasons of

homogeneity.

Assuming the system to be initially at rest, the Laplace transform

of its response to a unit-impulse is given by :-

wnz

2 iy
8% + 20 wmS + wp

x (8) .=

H (8) (2.3)

1l

Gonverting this mechanical system into its electrical analog by pulting
mass m equivalent to inductance L, mechanical resistance f equi-

valent to electrical resistance R, and stifness KX equivalent to the

reciprocal of capacitance C Tgquation (2.2) can be rewritten as :-

B Y (2.44)

N R da o
e+ + T ® t et oIE
or
at 2 1_/ Ny -
e F T I b e [ Tak=on Uils) . (2ab)

where the constants p and @y, TOW have the values :
R C
o e 5 T and W, = ._1
N LC

Equation (2.4a) and (2.4b) represent a simple L, C, R circuit ina

series connexion as shown in Fig., (2). The solution of Equation (2.4a)

can be discussed under 3 cases;



viZo -

Cage I £ < A4

. £
g=1+4e™n® 5in [0 (1-8)F ¢t +6] (2.52)
or I:%:Awn e_ﬁwnt Sin ["‘Jn (7—5)%13.] (2-5b)
2\k '

where tan € = ; 3 Cos 8= -8

and A = - S—i—jg— s Ah Sy

This gives an oscillatory response and consists of oscillations that

have a frequency ¢, (1 - ﬁ)% and amplitude that is damped by the
exponential term e"ﬁwl'ft (see curve (1), Pig. 3).
Cage IT B =1
—~u_+t
q = 1 =€ n ('1 +wn t) (2-6)
The system is now criticelly damped. (curve (3), Fig. 3).

Cage IIT B > ¢

g = 1 + P._e"“'t + B~ ¥ (2.2
where - and -1 are the roots of the equation
s +2 P8 w, 8 + wna = 0
and A = —F— B g g, r > 0

¢ - ¢ -7 &

The responde is now non-periodic (curve (#), Fig.}).

Case I gives the condition for the transient response of the

circuit t» a unit impulse, to be oscillatory. In the present model

see 7



the random velocity function ui(t) is divided into elerents of infi-
nitermal width dt, as shown in Pig. 4. At g time ¢t = i, for
example, the element has the width di and the height ui(p). If this
element was a unit impulse, the output due to this element alone, would
ve H (¢t - p), where the transfer function H is given by equation
(2.3). Because of it non-unity area, ui(u) de , the output of the

system due to this impulse would be :
duo(t) = wy (p) ap H(t -p) (2.8)

The total output can be obtained by summing up all the infinitesimal
outputs due to all the elements into which wu,(t) is divided, from

the begining to time t.
£

w) = [ BG-w) w

-t1

putting 1 =t - ¢ we have
it

uo(t) Dy RQ) my (=) (2.9)

0

The random input velocity function is thus simulated by a succegsion

of positive and negative impulses, of varying amplitudes. The time
interval between two consecutive impulseg is less ?han the time required
for the transient to die away. From Fig 3 4t 55 seen that for

B = 0.1, the output from the system would be a superposition of sinu-

soidal waves of varying amplitudes-and frequencies.

view 8



Resonant Freguency

The resonant frequency of an osecillatory system is the frequency
wp at which the modulus of the transfer function is maximum. For the

system represented by equation {2.4), we have

1
o = o, (4 - 28 )2 (2.10)
the transfer function of the system is related to the spectral densi-

ties of the inputs and outputs of the system for the longitudinal

component by the eguation
aec AR o= Lo kYR e ) (2.11)

3. Working of the Model

The velocity component ui(t) is simulated by a series of
rectangular pulses, of small finite width whose amplitude is modulated
in accordance with the sinosoidal noise voltagé from the white noise
generator., The pulses will therefore have the same width but varying
amplitudes and frequencies. The time interval between successive
pulses is less than the time reduired for the transient response éf the
L, 6, R circuit to die out. This pulse-wave is fed to the L, C, R
circuit. The spectral densities of the input and the output sigmals
can be obtained by feeding them separately to a correlator coupled
to a high-speed differential analyser. The resultant pattern can be

obtained on the sereen of a C.R.0.

pe]



L, Discussion

In the present model, a reduction in the buoyancy term is

simulated by reducing the value of X. This causes a decrease in w,

because 'm' also increases. The value of P is assumed to remain

constant, so that from eguation (2.40) it is obvious that the

resonant frequency @R will decrease.

It is seen from the paper by Webb [7']that the height of the
first peak of the energy spectrum is, in general, directly proportional
to the turbulent kinetic energy of the wind component. An increase in
s e (ﬁ) is therefore associsted with an increase in Gﬁ so that
the ratio « 7o (ﬁ)/’ﬁi can be taken to be approximately constant.
In the present model, an increase in the turbulent kinetic energy is
simulated by an increase in the amplitudes of the random wave fluctua-
tions. The maximum value of the autocorrelation function, R (1) is

“also thus increased. Since the spectral density is a Fourier trans-

form of the autocorrelation function, its maximum value will also

W, Mo (k)
e e R be assumed congtant.

u

increase, so that the ratio.

From equation (2.3) it is seen that

BH(8) _ w [28+2p 4 sl_

= (4.1)
%n [2+28u8 +0?]* *
i §

The R.H.S. of this equation is positive for all positive values of

S and Wy s A decrease in Wy therefore leads to a decrease in
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H(S). Equation (2,11) shows that for a particular value of 7, (k)

the value of no(k) will decrease, following 2 decreage in « .,
Since the ratio W, 7o (kl/ci is constant, @ must increase. The
maximum value of the normalized spectral density will now occur at a

higher frequency.

The transverse component of the wind velocity can also be
aimulated asg above, with the difference that tﬂe amplitudes in this
case would be comparatively smaller, The secondary peaks in the
response trace would become very much smaller, to be easily distin-

guisghable,

From Equation (2.3) we also get,

aﬂaﬁgs) - - +§ e s‘ s

i Wy B+ wn]
An increase in the energy dissipation by friction is simulated by an
increase in fB. From the above equation it is elear thét'an increase
in B would lead to a decrease in H(S), which would result in a
decrease in the output spectral density for a fixed input spectral

density.

But from equation (1.4) and also from observations in [?] ik
seen that an increase in the turbulent energy results in an increase
in the frictional dissipation. This would mean an increase in the
input spectral density. Thus the decrease in H(S) 4is more or less
compensated by an increase in T, (ﬁ), resulting in no net change

in e (E).

soe 1‘}
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5, Prediction

On the basis of Kotelnikov's theorem, a random process which is
o

singular (i.e. satisfying the condition that j‘IE no () 3, Givergence

C:JE +£|‘..'1
b

w1 being a constant) can be extrapolated for a very long time. A

band-limited function satisfying the condition
Mo (w) =g for W < =g and W > g
and being bounded, i.e,
no (W) & ny for —Wo < < Wg ' (5.1)

can be assumed singular, within certain limitations. In the present
model the upper limit of the function is set by the high frequency
filter while the lower limit is set by the sensitivity of the measuring

finstruments.

The random veloeibty function can now be expressed in terms of

o

its earlier values at times, t -7, t -27, ..... where 7 >0 is

a suitably chosen time interval. Then the pth difference of

L]

ao (t) can be written as,

by (8) = uo(‘c)-(f)uo (t-T)+<g> vwolt =27 ) ...
unP( g)m (8257 ) (5.2)

Where ( g ) is the binomial coefficient

! L T

)
ane



12

The random functions wuo(t) and Ap (t) are commected by a linear

transformation. If we represent uo(t) as,

i (5.5

wolt) = ‘ug e’
Uy being the complex amplitude, then at the output we would get a

function

s kbl ' (5.4)

where. x, =K (0) u

w W

K (w) being the transfer function of the filter. Utilising this

principle we get from equation (5.2).
by (k) = (4 -7 P Galk)
so that K (w) = (4 - 727 >
or [K (0)]" = (2 8mm 4E )% (5.5)

It follows from equation (5.2) that
4,2 L 3
p(t) = 3 f [X () ]? ¢ (o) av

o

€ ok /( 2 sin 4T %P qu (5.6)

If we choose a value of T, such that

Il
5 w v i 3
2 8in —9---2 < 1 i.e. < --—3 e

a8 ﬂ?)
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then we have, the limiting value

1im A% (t) =0

AL e | o

Equation (5.2) can now be rewritten as

wot) =(2) wlt-n- (3) mle-2n +....
+,...-(-1)P< §> us(t--p?’)‘f'ﬁp(t) (5.7)

where Ap(t) can be neglected if p is large.

Thus we can find uo(t) from its past values us(t - T),
zolt - 27) ... ete. Having found ua(t) we can use this value to

predict us(t # 7), wuolt +2 7) ... ete.

The main limitation in the method is that the boundaries of

the band should be very sharp for the function to be really singular.
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