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ABSTRACT
The paper presents the results of an investigation on mountain waves
for the Asssm hills and its neighbouring region. Computations of vertical
velocity were made using a twc dimensional linearised model by analytical and
numerizal methods for several situations in the winter sesson when the ocowr-
rance of lee waves in the region are seen on weather gatellite cloud cobserva-

tions. Impcrtant aspects of the SW flow pattern have been discussed.
1. Introdustion

It is well known that when air flows over an obstacle, waves are
formed to the lee of the barrier, under suitable conditions of thermal stra-
tification and wind shear., Scorer (4949), using a realistic distribution of

wind and temperature in the atmosphere, derived sclutions of the equation
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Here, @€ is the undisturbed potential temperature gnd U 2is undisturbed

wind veloaity, © and U are functions of 2z cnly, and g 2is the
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sessleration dus to gravity. The =x-axis points eastwards while Z2 is the
vertical axis reckoned to be positive upwards. Scorer established that for

lee waves to form, 1% should decrease with height,

Sclutions to the,abqve equation were obtained by assuming two
layers in the atmosphere with different values of 1% , Sawyer (1960)
studied the problem numerically by in‘tegrating the wave equation used in
Scorer's problem, Palm (1958), Palm and Foldvik (1950), Foldvik and Palm
(1957, 1959) and Doos (1962, 1964, 1958) used en exponential representation
for the fuﬁc‘tion i g % denote 1ts variation with height and obtained
solutions in terms of Bessél functions. Sarker (1965), using a similar
method, obtained solutions for the vertical perturbation velocity for the
Wegtern Ghats in India, In his subsequent work, he numerically integrated
the equations used in h:!.s earlier study to compute orographic rainfall during
the monsoon season for the Western Ghats, Das (1964) studied the effect of
Himalayas on large scale flow patterns in the westerlies as a three dimen-

sional problem,

In this paper we sclve the two dimensional linearised problem by

analytical and numerical methods with particular reference to the Assam hills,

2, Mountain wave eqguation

We consider a two dimensional system of axes With =z axis pcinting
eastwards and the Z axis directed vertiocally upwards. Let the perturbation
varigbles be denoted by u, ¢, w, § and T while the corresponding

undisturbed values of the same variables are U, ¢, 0, ¥ and T,
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where U, @ and T are functions of % only. By a process of elimina-

tion (Palm and Foldvik (1960)), we obtain the following egquation for the

vartical perturbation velocity,
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where
p* 1is the dry adiabatic lapse rate
v is the actual lapse rate
T
g - Ry
and B is the universal gas constant,

The dependent variable W repregsents the vertical component of the
perturbation velocity.

We introduce a new variable Wy given by,

W = Wy exp ( -5‘2_—‘3‘%2"‘ Z ) ses \Z252)

The small variation of ( %:i%i— with height is disregarded when we

differentiate (2.2) with respect to Z, Equation (2.1) is thus trans-

formed to
'Q:;-‘;gi > %Zg‘! + 2 (Z) W'l = 0 e (233)
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where,
5 A v¥¢ _ 1 a%*g 1 4o ( {v* - p g i
£2(2) = 377 g - IRT
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Tn this paper, (2.3) was solved with suitable boundary conditions by analyt:i-
cal and numerical methods. We discuss the method of solutions, and the

regults obtained for the Assam hills.

3, The mountain profile

The Assam hills run in a north-south direction from the Naga hiils
to the north to the Lushai hills to the south, with an average elevation
varying between 0.5 to 1 km., We have considered a section of the hills slong
the latitude belt 24-25°N from 93°E to 95°E. This area encloses the Manipur
hills. The hAverage ftopography of the ares may be represented by combining
two ridges of different heights separated by a digtance, This is shown in

Fig, 1. We have then for the mountain profile the following expression,

2 2 .
¢ x) m it iy e (1)

where by and b, are heights of two ridges, a is the half-width, and 4

is the distance seperating the two ridges.

L, Anslytical solutions

To obtain an analytical solution of equation (2.3) we need to

specity the function #£(Z), For a stable stratification f£(Z) decreases
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with height and can be well represented by the exponential function,

£(z) = £, oM (1)

where f, and A are constants., We first assume the ground profile to
be sinusoidal, and then generalise the solution by Fourier integrals for
an arbitrary profile.

Let,

1;\'1‘1 = w em‘ Qe s (}-I—o?-)

Substitution of (L.1) and (4.2) in (2.3) leads to,

LAt W aw ( => | R TR (4.3)
e B
where
LM
- e ,
TR (k)
2 (£,)2
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General solution of (4.3) is,

W =43 (n) ¢+ BY (n)
A ' -\Z/2
:A.Jm(ﬁez/z)+3¥m(ﬁem/) (4.5)
where m = % , and Jm and Y are Bessel functions of first and

gecond kind of order m and angument 7n ,
Both m and n are real,

The boundary conditions to determine A and B are :-
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(A) Upper boundary

i(xnZ ) * 0 as G+t

This implies that the energy remains finite at great heights, As the

second solution in (4.5) becomesinfinitely large at great heights, we put

B =20,
bonsequently,
W o= Aexp (ikx) e@( 2_RRV Z) x%(ﬁ 5 )
evs (4e6)

(B) The lower boundary

At the lower boundary we consider the flow to be tangential to the

surface, For the profile given by (3.1) this implies,

¥im g )= )% ¢ & ks )
Hence, the linearised lower boundary condition for a ridge of the form,
$ (x) = f e~ ab cos kx dx
]
is, L2
W’(x, 0) =1 (0) %; /- e—ak ab cos kx dk ver (4e8)

Consequently, the solution satisfying the lower boundary condition is

) e -X2z/2
vin D - 1 em (&R ) & [ e,
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Ths integral in (4.9) is an improper integral as J, (B ) may varnisgh £

real values of k, The roots of the egunations J& ( B ) =0 whish

represent the singularities of the integrand, determine the lez wavas,

We shall, evaluate the Cauchy principal value of this integral., As2ord-
ingly, we integrate (4.9) elong the contour shown in Fig,2,
or this purpose we put,
~NZ/2
' /ﬁ ~alc In (g e )
; e L w —
v h i)
C - -
= ke [ o X1 g eMRy
= e for x>0
c e T
oy iz . .i.)\, -“
=-R-af e"&‘{eib:ame(ﬁe Z/‘z)
' : : dx for x <0
. £ ..Jm (.,3 ) i
3 R (4;10)

where € dis the path of integration shown in Fig.2, and Rs indiaétes ths
real part of the integral, The solution is nct unigue when the mction is
ststionary and free waves exist, To make the solution unique, we adopt the
nethod due to Kelvin (1886), that is, we add fres waves that will mullify
the waves on the upstream side of the barr&ef exten&ing'iﬁpto infinity,
Performing the integration, and allowing the radii-of the indentations %a

teni %5 zero and the radius of the are ta teml o infinity, we fing,

W(x, 2) = Wp + Wi

wha»s Wpr represents the wave part, i.e,, the contribution to the integral

wae 8
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due to & singularity or singularities and Wp is the contribution along

the imaginary axis. We have, for the region

X B0y
;AR Kx _ AZ/2
Wp = ﬁ(O)exp( L= Z> xI[e"’_"s‘k e abk J, (P e /)dk
A gk B )
vos (4e11)
Ll =akn
e = -0 (0) e@<_§_£TRLz> xzn‘fmnccomzm (8 o2
' : =1-3 7
dk mn B)
While for x< O, ;
Wp = T (0) 9@(%2)::1-/. ook o qux 3, (5 o™Y/2) e
; 0 = __Eim(p) i : ¢

We = 0

where, m,'s represent the zeros of J (' g) 'anc-l“ Km, 's the corre s-
ponding wave numbers., In evaluating Wp we consider the integral along the
imaginary axis, and as m is e fumtionof K, J (f) and I (B oTM/2y
are expré_saéd as Jy. ﬁ.)- and J,- (B e_wz).. : By I we represent the
imaginary part of an integral,  In eguation (4s11) and (4,12) only the down-
stream componén‘ts were evaluated., These are the value-s of Wy which

represent a sum of harmonic lee waves and constitute real wave motion.

5. Computations

De (1970) reported the occurrenbe’ of mouﬁta.'in wa.v.éa in Assam and

LR ] 9
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nsighbouring Burma-China hills during the winter season,. The values of

wavelength determined were compa.red with observed values determined from

satellite cloud pictures, (De, (1971)).

Using the values of U' and T from rediosonde and rawin obser-
vations of Gauhati, the values of f£(Z) were calculated &f intervals of
0.25 km, The values of f(Z) were then approximated by an exponential
representation, i.e.,

£(z) = fo et

and the values of £y and A were determined, The solutions of the
equation J, (8 ) =0 were obtained graphically, treating I, ( 8 )

as a function of m, From (4.5) we find,

g
m‘z“."lKns
o 2K
BN S

where L iz the wave length of the lee waves and m, are the roots of

o (g )=0, and Kn 1is the wave number.

Using (4.10) the perturbation vertical velocities for different
synoptic situations were computed for the Assam hill profile. The computa-
+ions were carried out separately for the two ridges and graphically added,
This is permissible because we are concerned here with a linear model,

The following numerical values were used :

[£:]
il

20,0 km

By = 039 km

LR ']:
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B = 0.7 dm
d = 55,0 km
= 10'2 km/secz
R = 29 x 107 km-z/seaz/dag
x = 14
p* = 10,0°C/kn

6, Numerical solutions

If W, (x, &) dis resolved into its harmonic components by its

Fourier transform

(-]

W (x’ Z) = [ W' (Z, K) eilC‘: d-k, e @ (601)

o
and substituted in equation (2,3) we find,

2.
E%‘%;' + (£(8)~% ) W =0 vas  (6:2)

where,

Ww(x, Z2) = exp(%—iﬁ?ﬁz) /.em‘ﬂ' (2, k)
5 :

Tn this part we shall find the solutions of (6.2) by numerisal integration

with appropriate boundary conditions.

The lower boundary condition (4,7) provides,

Wiz, 0) =8 (€£)& (&),

Q93 1‘1
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where,

2 2
o ok By g =1
& (x) 8% -+ x% & + (x - 4d)°
(==
- [ g8k ikx o a.baf ook ik (x-d) e
o o

The distance x is measured from the crest of the Pirst ridge in the

west-east direction,

At 72 =0, for a gingle ridge,
W' (0, ¥) = U (0) e=%% apmix (6.3)

For the upper boundary condition, we note that the solution is indeter-
minate unless values of f(Z) are specified at great heights., For

" mumerical integration, we take actual values of f£(Z) at intervals of

0.25 km from the surface to a height H. Above H, we €hose a constant
valus of f£(Z) = L, Tie choice of L has only a small effect at low
levels (Paim and Foldvik 1960, Corby and Sawyer 1958, Sawyer 1960).

We then have above Z = H

W' (2, k) = Aexp (iw, Z) where,

= Aexp (-v 'i.. %Z)  where, (€k)

' L]
and and vy, &are positive numbers.

i
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As pressure and vertical velocity are cortinuous functionsg of Z

i a .
at an interface, we assume wy and 5z Wk are also continuous. (onse=

quently, the upper boundary condition is,
3

— w‘ - ‘ By, '
" S w K<L
'a ; L‘ k (6.5)
= J)ka k= L
at Z=H

To solve (5.2) with the abova boundary conditions, we specify a function

W(Z,k) which satisfies (5.2) and (6.5) at Z =

Conseguently, 'y

— + (f@)-k?) yp =

e (6.6)
Where, y2 = - k2

dy

Sz T ¥pat Zak, KoL f
Where ;{2 = P (5.7)

We also assume for convenience,

Win, kK) =1
Thus, w'k is a simple multiple of W which will satisfy the lower boundary
condition (5.3). Moreover,

Wy = Uto) abik W(ZyK) -ak

" Eg

The vertlical velocity on account of both rildges is,

1} o 3 @ . . WEZK) oK ik
‘Refizi U [ S, abiik Y oK) - “dk (6.9)

pzx) -ak ik(e-d)
+ J ab ik o K) e dk]




13

where, we assume,

e ]

We shall now dlscuss the quadrature of (6.9). Integration is

Yo

difficult when the integrand has a siggularity i.e. U (o,k)=0
To remove the singularity, we subtract from the integrand a function

which has & similar hehaviour near the singular point. This function is,

Y (z,ky) exp(—ak+ikx)gbik
— A ¢
Y (o, Ky) (K‘K)J) : (6.10)

where K = Ky is a singular point.

Hence,
UJ(X)Z):
Re Ulo)(%e V27 (P (w@k) & _w@&ke) 2K, .0,
(O_'Z ) [S y(0,K) Uzzilp'(OJK”)(K‘kb)_‘ (6.11)
r s E R [Tabik expaKIRN §
v=1 V¥(0,Ky) K~Kyi

for a single ridge.

The integrand in the first integral of (5.11) is free from singu-
larities, The second integral was evaluated by contour integratiia in the
complex k;;plane. The path of integration is shown in Fig.3. The path was
chosen such that the singularity was confined to the upper quadrant only,
thereby allowing only waves downstream of 'ﬁhe barrier. Performing the inte-
gration and making the radii of indentations tend to zero and the radius of
the circular are tend to infinity, we get, for the second integrel in (6.11),

S ablk exP(—&ki-rk)L Jk
K- Ky [{ (a ) +l(1"3)fk:ldk

=0 ' o
LOr +0) Jo Ka KOO0




and 5 abt.k exp (-ak-1kx) Jk
X-K»
= i{eeE)® )' K zb ex.pl-_g—(a )L +3) k]c‘k:x4o
kK (1-¢) =Ko

Tt is seen thet a term of the form 2 Wi exp (-aky + ko)
appears for, X2 O . Thls represents a les wave. For simplicity we
chose f{Z) =L =0 above Z =H (km). As indicated earlier, this choias
has a very small effect on the flow at low levels. With this choize,
is real, and the les wayve term represents & simple harmoniz wave train

extending infinitely downstream. The expression for vertical veloc:.ty is

similarly divided into three parts X, L2 and Xz where,

SE wzx g ¥ (z.Ky) %abik exv(—ak’f‘k")‘"‘(é

¥ (OJK) v=| P (0, ky)(xk-Ky) 12)
nd for % i o - : (X~
aud f T he res; (021:1’:_»?/' : (‘+()2~Sk"b ex?[{..(a+x.)+l.(x 1)}9:“(
i Z_‘ ‘P'(O Xu) S 0 (=) k-Xy x
(6.132)
v
(5.13p)

while for X £ O

N \P’(Z,kb) PG -L)zjz,b exp u-(a-x)i- ((X.'i'é!)\]ﬂo“‘\
£ t=

Re= 2 |
521 VO, (k%) 8 o L e
=0l :
Jl(S :
The vertical velocity for a single ridge is givean by,
W u Z)=1 (o) QQ”D )/ZCReal part (x‘+x2+15):| (6.1%)

The numerical integration was carried out for 32 values of K

for the range 0 to 5.0 =L, Eguation (5.6) mey be expressed in terms

Uqu == Y J"[z -k (JL)?;_KZ)] Y,

J
&
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of fizlte diffeerence by
Yooy = “Waum +[2- h szk )J Yy (6.15)

where h is an interval of 0.25 km.
Integration starts fr s the \pper Boundary where WN=I. We also put,

B e
Wooy = l? 12 h k<L (5.16)
=1+ "'*_L?'"" + Y h K>l
Similarly, by differentiating (5.15) we get,
' o 2 2. ' 2 =
Wiy == i, H1 + &H«. (lU-K)J Wyt 2Kh™ Y, (6.17)
We ]mu,
\\’u =0

ulj__:__ 2 Lkh ol |
N - k“*m_ K<

= kb 4 K> L

After evaluating the values of Y (%, K) and lp' (z, ¥) for all levels and

for values of X ranging from O +to 5.0 km™ l:, we search for si ngu.la.rltlas

p(o,Kk) ; S =
or near simularities. We evaluate \Y}’_(Z—K/ for Z = 1 km at inter-

vals of O. 05”1 from 0.1 Jen™ y and at larger 1ntervs.ls a.p'to 5 km l._ The
lp(o,lq] =S iR ' %3

y(z ) are used as sts.rtlng pomts for an -_ynterat:.ve proce-

dure to locate the zeros of the function _ _
q = _’-p {0! KJ AR i W g (e iR PPy i ks o

W&, k)

The ltewative recurrence relation is,

mi.n.ima of [

s e KT Ovnes \(ah ks _ 7 (6._18)_

These rooks gk 7e the values corresponding to lee waves. Fvaluation of the
integrals ia (5.12) was done by considerl'zg the ;:hegrand to be prodac’t of
A(X) -ahd- exp (ik.x), Where A(K) is a slowly varying f’Jl"C"GJ_OYI of K.

The inbegmal hetween two successive pa.lrs of ord.,.n.ate-,: K\ and K?_ is,

T
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K

2
£ A (k) exp (Wkx) dk A H}
¥, :i %%ih (}_\_;?_-Kt ),JS ._A!;A% exp {u _!E -2
-'—;L- {Cos(j?é T )X = *(K; - Bin (K2 K ) }

x(ﬁzhAdelPﬁﬁl(K2+K“\}

(6.19)

The displacement of stream lines was computed by using the relation between

vertical velocity and stream function. We have
i dE
L (z) 3 (x,2) = W ,7) (6.20)

The values of '&N for each level were evaluated by the following marching

scheme}

U(&Nl""i’uﬂ)
2h

§N+\” éﬂ‘

W N

2th

(6.21)

The values of ﬁ thus obtained for Z = 0 were compared with the
ground prufile. The comparison showed that the wvalues were in good agreement,

and the error was less than 10% everywhere.

T. Results and Discussion

T.1 We computed the values of vertical velocity for seven cases analy-
tically. We also computed the vertical velocity and displacement of stream
lines for three situations by the numerical method. A summary of the
results is presented in Table 1. The .computations were made for larger

wavelengths only (for wavelengths of the order of 20 km or more). It was

soe LT
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observed by computation that the gmaller wavelengths did not produce appre-
ciable vertical velocities; consequently, they are not presented in this
peper. Details of each individual cases and diagrams are not being presented
to save space.

T.2 In all cases, it was observed that the lapse rates at all levels wers
stable, often increasing with height. The lapse rate varied between 3 and

T7° C/km. The wind speed was also found to increase with height often with

increasing shear. The surface winds were of the order of 5 m sec™l

, reaching
a value of the order of 50 m sec“l at 12 km. The values of f£(Z) were a

maximun a2t the surface and decreased rapidly near the ground layers smoothly
-2 .
with height. The surface values were of the order of 5 km , which decreased

to about .05 R at a height of 10 km. The wind and tempgrature d;stribu-
tion and the distribution of f£(Z) with height, for a representative case
{8.1.67), is shown in Fig.4(a) and L4(b). The fériation of vertical velocity
with height showed a sinusoidal pattern, varying from positive to negative
values and again attaining positive values. The variation of vertical
veloelity with height for the above case i1s shown in Pig.5. The wvariation

of vertical velocity downstream with distance is shown in Fig.6. It may be
stated here that, depending upon the wave length, the superimposition of the
two wave trains, which are due to two ridges having a fixed phase difference

(dus to d), may either intensify or dampen the waves beyond the second ridge.

Te3 Discussion of the numerical solution
We made computations by the numerical method on thres occasions i.e.
8.1.67, 10.2.67 and 5.3.67. The complete vertical velocity field (X ,» X,/

aad >(5 ) was computed for both ridges at different grid points iﬁ the
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% = z plane, The vertical velocity pattern for 8.1.67 is shown in Fig.T.
It was observed in all cases that vertical velocities far on the upstream
side, i.e., beyond the first ridge at all levels were small; being less
than 1 cm/sec. But, on the downstream side, the motion was sinusoidal in
neture, i.e., the vertical velocity varied between positive and negativs
values over the same point at different heights. The maximum verticzal
velocity due to X,, X,_'e.nd Xz was of the order 1.4 m/sec. The
vertical velocity pattern showed nodal lines sloping with height towards

the upstream side.

T.4 The displacement of stream lines for the gbove case is showa in
Fig. 8. For all three situations, the stream line displacements showed
regular wave like oscillations to the lee of the barrier. Wave crests and
troughs were found to tilt with height towards the upstream side. At largs
distances upstream, the dlsplacements were very small and did not show any
wave pattern. This is in agresment with the analytical computation of

earlier workers.

8. Effgsts of narrow ridges

To demonstrate the effect of the size of an obstazle on the verti-
cal velocity, we computed the vertical velocity for an arbitrary bell;shaped
ridge (a.z 10 km, b = 0.9 km). At all levels the compubed vertical veloci:
ties were higher than those for the Assam hills, because the latter are much

broader. The comparative values for a representative case (23.11.66) are

ghown in Fig. 9.

ey il



9. opclusions

We mzy draw fellewing conclusions from thils-study s-

() ™e airstream ix Assax during the winter months has & fayourazls

cl

5
Pt

O Zansprsss

L

thermal stratififsbion and wind shear

(]
W

o

WETS:

(11) The vertical velocity associated with

|.l

ig2 wmves of 20=25 kn warae
length varies from 10 cm sec"l (o S I se::"l for ths Assanm nilis,

or any other cbstacle of gimilar dimensions. For largsr wavs

lengths (of the orciw of TO km) the vertical valocitiss ars highar
and of the order of & m/se These values ars in agresment X

+ha computations of Sarker (1965)
(1i1) The computations made for an arbltrary bell shapel obstaczls
2 10 km b = 0,9 km) suggest that lee warss :.‘is-sarv-a-:l_ i Assam
could produce vertical velocities of the order of 2 m/se: on mzzound
of narrow isclatel peaks.
(3v) The variatior of vertlsel veloelty is sinusolidal in neturs, albarnets

3

ing between positlrs and negative valuss upic graat helghts,

o) Im the vertical veloeity fisld the nodal Iimes £il% upstraam. 7hls
is also trus for ridges and troughs in the strean displacement
field, This iz in agreement with what we should expect in g fluii
with thermal stretification,

{+1) The upward displacement of an alrstream over the ridge reverses wiil

height, sometimes at quite low levels.
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Page 1 Line & delete 3W

Page & Egquation (4.2 ) replace W by W
Page 5 Equation ( 4.3 ) replace W by Wo
Page 5 REquation ( 4.5 ) replace W by Wo

Page 13 Bquation in the last line

add t2Tiikr ab exp (akr+ikrX) X >0

Page 14 R.H.S. of equation on at the top of the page change
g o %
(1+1) to (1)

Page 14 Bquation (6,13 (a)) read as,

N
:% Y(z,kr) l(I-I-L)

y'(o,kr)
X j kab cxPE{—(a+x)+|_(‘x i)}k]dk
(1+i)k=-ky

Pags 14 Equation (6:13 (b)) read as

X, = 211;23(; : )’ tkr ab exp (- akr + iky X)

Page 14 Equation (6.13 (c)) read as

N y(zkr) .
== ¥emm  L0-D) xfkab exp [ {-G- cxyrieesa) Y] dk

Y=
(L) k-kr
Page 153 In Equation (6.15) & (6.17)

2
replace 4 , b)’ ‘Fr



