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Multimodel Scheme for Prediction of Monthly Rainfall over India

J. R. Kulkarni, Savita G. Kulkarni®, Yogesh Badhe’, Sanjeev S. Tambe”,
Bhaskar D. Kulkarni* and G. B. Pant
Indian Institute of Tropical meteorology, Pashan Pune 411008

Abstract

Multimodel scheme for the prediction of monthly rainfall over India has been developed. It
is a linear combination of three different nonlinear time series models. The models are EBP
(based on error back propagation algorithm of Artificial Neural Networks ANN), (2) aiNet
(based on probabilstic neural network theory) and SVR (based on Support Vector Machine
theory). Separate schemes are developed for (1) all India and (2) seven macro climatic zones
(homogeneous, core, northwest, west central, central northeast, northeast and peninsular) of
India. Monthly rainfall data of these 8 regions for the period 1871-2001 have been used in
the study. The data for the period 1871-1990 has been used for training and data for the
period 1991-2001 has been used for testing. The data is preprocessed by applying principle
component analysis to overcome multicollinearirty problem and dimensionality reduction.
The models showed capability of simulating the monthly rainfall variability over all the
regions quite well. The performance of the models has been found to vary from month to
month and region to region. The performance of the models in predicting monthly rainfall
has been tested by computing the skill scores. The highest skill score acieved is 0.31. Taken
all the 8 regions together, this multimodel approach shows skills in the monthly predictions
in 54%, 46%, 63% and 50% months in the winter, premonsoon, monsoon and post monsoon

season, respectively. The skills scores are low, but they are positive in 56% of cases.
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1. Introduction

India's agriculture, water resources and industrial production depend substantially on the
summer monsoon season (June - September) rainfall. The prediction of Indian summer
monsoon Rainfall (ISMR) has been found immense useful in taking early actions for
country's water management strategy, mitigating ensuing drought conditions etc. The ISMR
predictions have been carried out for more than century in India. The subject has been
reviewed from time to time by various workers (Normand 1953, Shukla 1987, Krishna
Kumar et al. 1995, Webster et al. 1998).

The approaches used for ISMR prediction can be classified into three groups: (1) statistical
(2) dynamical and (3) machine learning / artificial intelligence. The statistical approach has a
long history and has been most widely used. Diagnostic studies of historical data sets have
discovered several parameters for ISMR prediction. These parameters represent different
components of the coupled atmosphere-ocean-land system. Using these parameters, a
variety of regression models have been developed. (Blanford 1884, Walker 1908, 1918, 1923,
Thapliyal 1990, Shukla and Mooley 1987, Bhalme et al 1986, Pathasarathy et al. 1988,
Gowariker et al. 1989, 1991). The reliability of the statistical models depends crucially on the
stability of the relationships between the predictand and predictor parameters. The existence
of secular variation in the strength of correlations between ISMR and some predictor
parameters has been known since Walker's time. Therefore there has been always updates of
the statistical models. The most successful, widely referred as 16 parameter Gowariker
model (Gowariker et al. 1991), has been changed to 8 parameter model from April 2003
(www.imd.gov.in).

The General Circulation Models (GCMs) are being used for the dynamical prediction of
ISMR. GCMs are basically the mathematical formulations of different atmosphere, ocean
and land surface processes. These formulations are based on the classical physical principles.
They represent a potentially powerful tool for the long-range weather and climate
predictions of the earth-atmosphere system. Although, the day to day predictability of the
weather is limited to two weeks, the seasonal prediction of ISMR 1is possible because the
interannual variability of ISMR is mostly governed by slowly varying boundary conditions.
The GCMs are integrated in time with prescribed initial and boundary conditions to
generate the circulations in the future times. ISMR predictions using GCMs have been
carried out in IITM (Indian Institute of Tropical Meteorology) since 1997. Two GCMs viz.
COLA (Center for Ocean Land Atmosphere USA) and HadAM2 b (from Hadley center for
climate prediction and research U.K.)) have been integrated in the ensemble mode to
generate the ISMR forecasts (Kulkarni et al. 2001). The ISMR predictions by this dynamical
method agree qualitatively well with the observed rainfall, and therefore they are found
very useful in supplementing the operational statistical predictions. Recently Krishnamurti
et al. (1999) introduced the concept of multimodel forecasting for dynamical prediction
approach. Each model has strengths and weaknesses due to usages of variety of
formulations, methodologies, assumptions etc. The multimodel approach tries to combine
the strengths of the individual models. In this approach, the predictions from the different
models are regressed against the observed fields Graham et al. ( 2000) showed advantages of
this approach using PROVOST data set.

The third and recent approach of ISMR prediction is based on the techniques in the machine
learning or artificial intelligence area. In this approach 'Artificial Neural Networks' (ANN)
are being used (Navone and Ceccatto 1994, Goswami and Srividya 1996, Venkateshan et al.
1997, Sahai et al. 2000). The error back propogation algorithm is used for estimating the




weights of the neurons in ANN. The performance of ANN based models in ISMR
predictions are found quite encouraging.

In addition to seasonal monsoon prediction, there is a strong need for monthly rainfall
prediction over entire India as well as smaller sub regions of the country. These types of
predictions will not only supplement the seasonal monsoon forecast but will provide more
utility than the seasonal forecast. It is well known fact that when ISMR for country as whole
is excess, there are some parts of the country where the seasonal rainfall is below normal or
scanty. Similarly when ISMR for country as a whole is deficient, some parts have excess
rainfall. The monthly rainfall prediction over smaller areas will be able to provide the
regionality in the rainfall distribution. At present no such method is available for monthly
rainfall prediction over India. In the present research report a novel scheme is proposed for
the monthly rainfall prediction. The rainfall in the post monsoon and winter months is
generally less but for the certain parts of the country, it gives a significant contribution. The
monthly rainfall scheme proposed here predicts rainfall for all months, which includes the
pre monsoon, post monsoon and winter months also. The scheme is based on the three
techniques viz. (1) EBP (based on error back propagation algorithm of Artificial Neural
Networks ANN), (2) SVR (based on Support Vector Machine theory) and (3) aiNet (based on
probabilstic neural network theory).

The monthly prediction scheme has an additional advantage. The accuracy of ANN based
prediction models very much depends upon the data size (Haykins 1999). With the available
ISMR data from 1971-2001, the size of the training and test together is limited to 131 points,
which imposes restrictions in the selection of best possible ANN architecture Increased data
size, permits us to try all possible combinations (number of hidden layers, number of
neurons in each layer) to increase the accuracy of the predictions.

The mutimodel scheme is developed using the linear combination of these three models. The
methods are described in the following sections.

2.  Error Back Propagation (EBP)

Error back propagation method (EBP), proposed by Rumelhart et al. (1986), is the most
widely used algorithm in ANN for time series predictions. The detailed description of EBP
technique can be found in Haykin (1994); and the references given in Navone and Ceccatto
(1994), Venkateshan et al. (1997). However for the sake of completeness, the technique is
briefly described here. It is based on a gradient descent technique which minimizes the
average-squared-error between the actual and network predicted output by moving down
the error surface. An EBP network consists of at least three layers of neurons, namely an
input layer, an output layer and a middle layer (known as hidden layer). Each neuron in a
layer is fully connected to the neurons of cosecutive layer and the strength of the connection
is known as weights. At the beginning of network training, the weights are randomly
initialized. Each node in the hidden layer first computes the weighted-sum of inputs which
is passed through a nonlinear transfer function to arrive at the output. The common choice
of nonlinear transfer function is either the logistic sigmoid or hyperbolic tangent. The output
values of the hidden layer neurons serve as inputs to the next layer neurons. The output of
the output layer nodes forms the network output. Subsequently, the network outputs are
compared with the target (desired) values and the prediction error is estimated. This error is
used to correct the connection weights between the hidden and output layers and
subsequently those between the hidden and input layers. The changes in the weights are
made by presenting the input-output patterns of the training data repeatedly until a
prespecified error criterion is fulfilled. At this stage the weights are said to be converged. In




order to speed up the convergence of the weights, a factor ‘momentum term’ is included in
the formualtion. Other important parameter, required to determine is the ‘learning rates’.
EBP model is said to be developed when the values of connecting weights, leaning rates and
momentum terms are determined.

3. Support Vector Regression (SVR)

In recent years, support vector regression (SVR) Vapnik (1995, 1996, 1998) , which is a
statistical learning theory based machine learning formalism is gaining popularity due to its
many attractive features and promising empirical performance. The salient features of SVR
are: (i) like ANNSs, SVR is an exclusively data based nonlinear modeling paradigm, (ii) SVR-
based models are based on the principle of structural risk minimization, which equips them
with greater potential to generalize, (iii) parameters of an SVR model are obtained by
solving a quadratic optimization problem, (iv) the objective function in SVR being of
quadratic form, it possesses a single minimum thus avoiding the heuristic procedure
involved in locating the global or the deepest local minimum on the error surface, and (v) in
SVR, the inputs are first nonlinearly mapped into a high dimensional feature space wherein
they are correlated linearly with the output. Although the foundation of the SVR paradigm
was laid down in mid 1990s, its applications in the field of atmospheric sciences have not
started yet.

3.1 SVR-based modeling

Support vector regression is an adaptation of a recent statistical learning theory based
classification paradigm, namely support vector machines (Vapnik 1995). The SVR formulation
follows structural risk minimization (SRM) principle, as opposed to the empirical risk
minimization (ERM) approach which is commonly employed within statistical machine
learning methods and also in training ANNSs. In SRM, an upper bound on the generalization
error is minimized as opposed to the ERM, which minimizes the prediction error on the
training data. This equips the SVR with a greater potential to generalize the input-output
relationship learnt during its training phase for making good predictions for new input data.
The SVR is a linear method in a high dimensional feature space, which is nonlinearly related
to the input space. Though the linear algorithm works in the high dimensional feature space,
in practice it does not involve any computations in that space, since through the usage of
kernels, all necessary computations are performed directly in the input space. In the
following, the basic concepts of SVR are introduced. A more detailed description of SVR can
be found in Vapnik (1995, 1998), Burges (1998), Smola et al. (1998), and Scholkoff et al.
(2001).

Consider a training data sety = {(x1, y1), (X2 ¥2), ..., (xp, yr)}, such that x; € VN is a
vector of input variables and y; € v, is the corresponding scalar output (target) value. Here,
the modeling objective is to find a regression function, y = f (x), such that it accurately
predicts the outputs {y} corresponding to a new set of input examples, {x}, which are drawn
from the same underlying joint probability distribution, P(x, y), as the training set. To fulfill
the stated goal, SVR considers following linear estimation function.

J(x) =(w,D(x)) + b 1)

where w denotes the weight vector; b refers to a constant known as “bias”; ®(x) denotes a
function termed feature, and (w,®(x)) represents the dot product in the feature space,
(such that ®: x - 1, w € 1). In SVR, the input data vector, x, is mapped into a high
dimensional feature space, 1, via a nonlinear mapping function, @, and a linear regression is




performed in this space for predicting y. Thus, the problem of nonlinear regression in lower
dimensional input space vN is transformed into a linear regression in the high dimensional
feature space, 1. Accordingly, the original optimization problem involving nonlinear
regression is transformed into finding the flattest function in the feature space 1 and not in
the input space, x. The unknown parameters w and b in Eq. 1 are estimated using the
training set, y. To avoid over fitting and thereby improving the generalization capability,
following regularized functional involving summation of the empirical risk and a

? ,is minimized (Burges 1998):

Reg[71= R, [} ]

=Zic(f(x;)—y,-)+kﬂ“’”2

where, R, and R,,,denote the regression and empirical risks, respectively;

complexity term "W
)

w”2 is the

Euclidean norm; C(.) is a cost function measuring the empirical risk, and A>0, is a

regularization constant. For a given function, f, the regression risk (test set error), R,..(f), is
the possible error committed by the function f in predicting the output corresponding to a
new (test) example input vector drawn randomly from the same sample probability
distribution, P(x, y), as the training set. The empirical risk R,,,(f), represents the error

(termed "training set error") committed in predicting the outputs of the training set inputs.
Minimization task described in Eq. 2 involves: (i) minimization of the empirical loss function
Remp(f) and, (ii) obtaining as small a w as possible, using the training set y. The commonly
used cost function is the “e-insensitive loss function” given as (Vapnik 1998):

1 (x)-3]-¢ for| £ (x)-y |22
c(f(x)-»)= @

0 otherwise

where € is a precision parameter representing the radius of the tube located around the
regression function (see Figure 1); the region enclosed by the tube is known as “e-insensitive
zone”. The SVR algorithm attempts to position the tube around the data as shown in figure
1. The optimization criterion in Eq. 3 penalizes those data points whose y values lie more
than ¢ distance away from the fitted function, f{x). In figure 1, the size of the stated excess
positive and negative deviations are depicted by & and &£* which are termed “slack”
variables. Outside of the [-g, €] region, the slack variables assume non-zero values. The SVR
fits f(x) to the data in a manner such that: (i) the training error is minimized by minimizing &
and & * and, (ii) ||WH2 is minimized to increase the flatness of f(x) or to penalize over
complexity of the fitting function. Vapnik (1998) showed that the following function
possessing finite number of parameters can minimize the regularized function in Eq. 2.
7 (xa0)=3 (s, -0 K (xx )+t @
i=1

where, a; and o;" (= 0) are the coefficients (Lagrange multipliers) satisfying cioi” = 0,1 =1, 2,
..., P, and K(x, x;) denotes the so called ‘kernel’ function describing the dot product in the

feature space. The kernel function is defined in terms of the dot product of the mapping
function as given by

K(xf!xj)=<q)(xi)’q)(xj)> ()



The advantage of this formulation (Egs. 4 and 5) is that for many choices of the set {(D ; (x)},

including infinite dimensional sets, the form of K is analytically known and very simple
(Mukherjee et al. 1997). Accordingly, the dot product in the feature space 1 can be computed
without actually mapping the vectors x; and x; into that space (i.e., computation of ®(x;) and
D(x;)). There exist several choices for the kernel function K; the two commonly used kernel
functions, namely, radial basis function (RBF) and nth degree polynomial are defined below
in Egs. (6) and (7), respectively.

K(xi,xj)=cxp w (6)

K(xi,xj)=[1+(xj,xj)]" (7)

In Eq. (4), the coefficients a and o' are obtained by solving following quadratic
programming problem.
Maximize:

P

R(a*, a)=—~;— i(“: —q, )(‘1; '“j)K(xf’xf)“EZ(“; "'“r')"'gyf (a}' —a,.) @)

i,j=1 i=1

P
Subject to constraints: 0 < oy, o* < C, Vi and Z (a; —a,.):O. Having estimated o, a’and b,

i=1
using a suitable quadratic programming algorithm, the SVR-based regression function takes
the form

fxw)=£(x.0,0%)=3 (0] ~a, K (x,x)+ b ©)

where, vector w is described in terms of the Lagrange multipliers o and o’. Owing to the
specific character of the above-described quadratic programming problem, only some of the
coefficients, (o' - o), are non-zero and the corresponding input vectors, x; , are called
support vectors (SVs). The SVs can be thought of as the most informative data points that
compress the information content of the training set. The coefficients a; and " have an
intuitive interpretation as forces pushing and pulling the regression estimate f (x;) towards
the measurements, y; (Muller et al. 1997).

In Eq. (9), the bias parameter, b, can be computed as follows;

b= {J’f ~ (X))o =€ Jora;e (O,C) (10)

Vi = f(X)po +€ for CZ; € (0’ C)

where, x; and y; respectively denote the ith support vector and the corresponding target
output, respectively. In the SVR formulation, C and & are two user-specified free parameters;
while C represents the trade-off between the model-complexity and the approximation error,
¢ signifies the width of the e-insensitive zone used to fit the training data. The stated free
parameters together with the specific form of the kernel function control the accuracy and
generalization performance of the regression estimate. The procedure of judicious selection
of C and ¢ is explained by Cherkassky and Ma (2002).




4 aiNet

ailNet is recently developed software tool for solving the prediction problems (Kranjnc 1997).
It is based on the concept of joint probability distribution between input and output vectors.
The formulations of aiNet model has been described briefly in the following paragraphs.
The detailed statistical and mathematical treatment can be found in the model
documentation paper (aiNet manual 1997). The following description of aiNet is mostly
taken from Guh (1998).

Suppose we have a number of cases to set up a model. Each case (a model vector) consists of
the same variables. The variables consists of the input variables and output variables:

X G St R T = {Xi, Xo} (11)
g ,

e J

aiNet predicts the output part based on the input part. The aiNet algorithm is based on a
few assumptions.

Firstly, all the model vectors are equally important with the same accuracy. Suppose we
have a model vector P that is only known for the input part. Its output part is calculated
based on the model M (called “C”) that has the same input part as P. According to this
assumption the output part of P will be the same as that of C. However, it is very unlikely
that a perfect match exits in reality. Thus a second probability-based assumption is needed
that states that if the input parts of the model vectors P and C are “near”, there is a high
probability that the output part of C is similar to the output part of P. Conversely, if the
input parts of P and C are “far”, there is only a low probability (figure 2).

The term “probabilty” is replaced by “similarity” hereafter. The qualitative descriptive terms
“near” and “far” are quantified using some measure of distance between the two vectors.
The two vectors are near if the vector norm of their difference is a small value. Usually, a
Euclidean norm is used in such cases. The Euclidean norm for the difference (distance)
between the two vectors P and C is given by

d, = /Z(xp,.- x.)’ (12)

When the distance between the input parts of the model vectors are defined, a probability
(Gaussian) function can be selected. Moreover, if the probability function and the distance
are known, the similarity can be calculated. The similarity between P and C is represented

by

-d%, la
S.=e ™ (13)
The equation (13) is a slightly modified form of the Gaussian function where the standard
deviation (SD) is replaced by a constant a. This constant is called as “penalty coefficient”
and is selected a priori. It has a significant influence on the shape of the probability function

as shown in the figure 3.

If a is very small, then the Gaussian function is so steep that even at a small distance d. the
similarity of their output parts will be low -close to zero. However, if a is very large, then
the similarity of their output parts will be very high -close to 1.



Similarly, for each model vector M we can calculate its distance from P and their similarity.
Finally, we determine how each model vector contributes to the output part of P. It is known
that each model vector from M contributes according to its calculated similarity to P. To
simplfy the the final calculation of the output part of P, the similarity coefficients must be
normalised; that is, their sum must be equal to 1:

. S -_—
B z";‘pf; > 5,=10 (14)

The index ‘i in equation (14) runs over all the model vectors and the index ‘x’ can represent
any model vector in the model. Once the similarity coefficients are normalized the final
result is obtained by a combination of the output parts all the model vectors. The multipliers
in this combination are the normalised similarities of each model vector with respect to the
vector P. The output of the model vector P, is given by

B=D3uX, (15)

Knowing the right value of the penalty coefficient solves the prediction problem. The
attempts are made with different values of it and finally the selection is made of the most
succesfull one. According to theory, there is only one optimal value for the penalty
coefficient. However the results are not sensitive to the optimal value. Another features
associated features of aiNet are:

e Ability to dynamically change the “knowledge base”. This means that new data may
be added to the neural network (or old data removed), additional variables may be
added (or old ones removed) and answers obtained right away - there is no time
consuming learning phase.

e aiNet provides a way to estimate the rate of error in the prediction. If the problem is
smooth i.e. without noise, then this error will represent an estimation for the error in
the predicted result. If the data is noisy, then this will represent an estimation for the
noise around the predicted result. This means that error estimation behaves locally.

e aiNet can cope with missing values in the data. In real life it is usually very difficult
to find a perfectively assembled knowledge base— there is always some data missing.
aiNet handles missing data automatically without requiring representation of the
missing data.

5. Data

Monthly rainfall data for (1) All India (Al), (2) Homogeneous India (HI) (3) Core India (CI)
and (4) five macro climatic zones of India have been used in the study. The details of the
rainfall data can be found from Parthasarathy et al. (1995). Figure 4a (from Parthasarathy
et al.1995) shows the meteorological sub-divisions considered for the preparation of
Al rainfall time series. Figure 4b, ¢ shows the sub divisions considered for HI and CI rainfall
time series respectively. Figure 2d shows five macro climatic zones of India. These are:
(1) Northwest India (NWI) (2) West central India (WCI) (3) Central northeast India (CNEI)
(4) Northeast India (NEI) and (5) Peninsular India (PI) respectively (Parthasarathy et al.
1995). All these regions are referred as 8 regions in the following discussions. The period of
data used is from 1871-2001.




6. Results and Discussion

Figure 5 shows the mean monthly rainfall variation in the year for 8 regions. There is a
strong annual cycle with peak in the month of July (associated with monsoon rainfall) and
minimum in the month of January for all the regions except PI where a bimodal distribution
is seen. The rainfall is very small in the months January through May, and there is a steep
increase in the month of June with the onset of monsoon for all the regions, except NEI,
where a good amont of rainfall is observed in the winter and pre monsoon months, and the
transition to monsoon season is smooth. The annual cycle of rainfall over NEI is well
behaved. The second peak in the month of October over PI corresponds to the post monsoon
rainfall due to withdrawal of summer monsoon and cyclonic activity.

For the development of the models, the data is divided into training period 1871-1990 and
test period 1991-2001. It is well known fact that accuracy of models increase with the
increase in the size of the training data set. The partition of the data into training and test has
been done to accommodate the sufficiently large data set for the training. The results are
found to be stable with varying sizes of the training data. As monthly rainfall data for each
of the regions contain large mutual correlations, it is pre processed by applying principle
component analysis (PCA). In addition to overcome the muticolinearity problem, PCA does
the dimensionality reduction.The uncorrelated input variables accelerates the EBP learning
process (Haykin 1999). First 8 principle components, which contain more than 90% of the
variance, are used in the development of the models. Table 1 provides the distributions of
variances in the 8 PCs for the 8 regions considered in the study. Figure 6 shows first 8 eigen
vectors for Al rainfall time series. Similar variations of the eigen vectors are found for other
regions. It is seen that the pair of first two eigen vectors represent the annual cycle in the
rainfall. These contain bulk of the variances of the PCs. The pair of eigen vectors 3-4, and
5-6 represent semiannual and seasonal cycles respectively. The eigen vector pair
7-8 represents the noise part. Considering all the 8 PCs, the maximum total variance 97.9%
is found in Al time series, and minimum 91.0% in NWI rainfall series. In the NEI rainfall,
first two PCs capture maximum variance of magnitude 86%, the reason for which may be
attributed to the well behaved rainfall annual cycle over the region. As the loadings have
both positive and negative signs, they are further scaled to have values between 0-1. These
scaled PCs are the basic inputs to the models.

6.1 Simualtion of Annual Rainfall Variability

Using the training data set, three models viz. EBP, SVR and aiNet are developed for the
8 regions. Table 2 shows the architectures of different EBP models developed for 8 regions.
The learning rate and momentum coefficients are 0.05 and 0.9 respectively for all the models.
SVR implementation known as “e-SVR” in the LIBSVM software library (Chang and Lin
2001), has been used to develop the 8 SVR-based models. The LIBSVM package utilizes a fast
and efficient method known as sequential minimal optimization (SMO) (Joachims 1998, Platt
1998) for solving large quadratic programming problems and thereby estimating function
parameters o, @' and b (see Eq. 9). To obtain an optimal SVR model, it is necessary to
examine the effects of kernel function and other algorithm-specific parameters; the three
kernel functions that were tested are, polynomial, RBF and sigmoid. Among these, RBF
resulted in the least RMSE values for the training and test sets of the outputs, y1 and .. The
numbers of support vectors used by the SVR algorithm for fitting the rainfall are given in
the Table 3. The optimal values of the four SVR-specific parameters namely, width of RBF
kernel (o), cost coefficient (C), loss function parameter (ess) and tolerance for termination




criterion (gw1) that minimized the E.. and E. are listed in Table 4. Using aiNet software,
8 models are developed for different regions. The penalty coefficients used in these models
are given in the Table 5.

The annual rainfall shows strong seasonal cycle, with maximum in the monsoon season and
minimum in the winter season over most of the zones. The standard deviations (SDs) and
coefficient of variability (CV) of monthly rainfalls are very high compared to that of
monsoon seasonal rainfall. The mean, SDs and CVs of monsoon seasonal rainfall are
852.0 mm, 80.0 mm and 9.4% whereas the corresponding values of Al monthly rainfall are
90.88 mm, 95.77 mm and 105% respectively. The columns 4 and 5 in Table 6 provide the
distribution of CVs for the 8 regions. The highest CV (158.8%) for monthly rainfall has been
observed over NWI and the lowest CV (81.5 %) is found over PI for the training period
1871-1990. The performances of the models have been tested by examining how well this
large variability has been simulated. The columns 6 and 7 in Table 6 provide the
distribution of CVs by the model simulated rainfalls for 8 regions. The model simulated
CV values are found in agreement with the observed CV values. For the test period,
model simulated CV values are found smaller in comparison with the observed CV values.
Table 7 shows the distributions of (1) correlation coefficients (CCs) between observed and
predicted, (2) means and (3) SDs of predicted and observed monthly rainfalls for all the
regions. The CCs are very high for both training and test data sets for all the regions. For
NWI CCs for the test period are found to decrease drastically compared to that in the
training period. Similarly the means and the SDs are nearly same for both training and test
periods for all the zones except for NWI. High CV over NWI may be probable reason for
large differences between CCs, SDs for training and test periods. In general the models are
capable of simulating the monthly rainfall variability quite well. All the three models show
nearly equal performances.

6.2 Multimodel Prediction of Monthly Rainfall

Combining the three models, the multimodel scheme is developed. The regression equation
for the multimodel scheme is of the form:

MMR(I) =a x EBP(I) + b x SVR(I) + ¢ x aiNet (I) (20)

where MMR(]) is the monthly predicted rainfall by multimodel scheme in the month I,
EBP(I), SVR(I), and aiNet(I) are the monthly predicted rainfalls by EBP, SVR and aiNet
models for the I th month. a, b, and c are the regression coefficients. Table 8 shows the
distribution of coefficients for all the months and for all the regions.

The model skill in the prediction has been tested by computing the parameter 'skill score'

!%I.

_ MSE,
MSE,,

S =1 (21)

where MSEp and MSEm are the mean-square-errors computed using observed minus
predicted and climatological-normal minus predicted values (Wilks 1995). The model has
skill in prediction if SS > 0, SS = 1 indicates perfect prediction. The positive value of SS gives
model’s capability in the predictions above the climatological forecasts.

Table 9 shows the distribution of SS values for different months for the test period for all the
8 regions. The months are arranged according to seasons. The upper values in the table
show SS values by the multimodel scheme. It has been observed that the multimodel
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approach does not necessarily improve the performance over the individual models. The
lower values show the skills in cases where the performance of the individual model is
better than the combined one. Here ‘a’, 'e' and ‘s’ represent aiNet, EBP, and SVR
respectively. It is seen that the highest SS value is 0.31 by aiNet and EBP for March and
August months for CNEI and for April month by aiNet for PI. For winter months
(December, January, February) the maximum SS value (0.15) is observed for January over HI
and CI. For post monsoon season (October, November), the maximum SS (0.27) has been
observed in November over PI by EBP model. In the monsoon season, the SS values are 0.31,
0.16 and 0.15 for the month August over CNEI, HI and Al, respectively. Figure 7 a, b show
the observed and predicted values of monthly rainfalls for these regions. The figure also
shows climatological monthly mean value. It is clearly seen that the predicted values are
lying in between the observed and climatological mean values. It shows that the positive
skill in the prediction is consistent throughout the test period.

The column 15 shows the number of months for which the models have skills in the
predictions for each region. The upper values show the number of months for which skills
are produced by multimodel approach and lower values show combined skills scores. As
stated above, it is seen that sometimes, individual model shows better skill than the
multimodel scheme. The lower values in the column 15 include skills by both individual and
multimodel scheme taken together. It is seen that the maximum skill is in 11 months for HI
and the lowest skill in 3 months for NWI. For 8 regions there are total 96 months in a year.
This approach shows skill in 52 months. For the winter months the multimodel approach
has skill in 10 months out of 24 months and multimodel plus individual models have skills
in 13 months. In the premonsoon months, these values are 5 / 24 and 11 / 24 respectively.
In the monsoon months, the multimodel has skills in the 13 months and multimodel plus
individual model has skills in 20 months out of 32 months. In the post monsoon months
these values are 5 / 16 and 8 / 16 respectively. Taken all the 8 regions together, this
multimodel approach shows skills in the monthly predictions in 54%, 46%, 63% and 50%
months in the winter, premonsoon, monsoon and post monsoon season, respectively.
Considering all the regions and all the months, this approach shows skills in 54 months out
of 96 months. The skills scores are low, but they are positive in 56 % of cases. Thus the
results clearly demonstrate the potential of the this new approach in the monthly
predictions. Nevertheless, more efforts are required to improve the models for achieving
better skill scores.

7. Conclusions

Monthly rainfall predictions for 8 regions over India have been attempted using multimodel
approach. In this approach, the outputs of the three different models viz. EBP, AiNet and
SVR are combined to generate final predictions. The models show capability of simulating
the large annual variability consistently well. It is observed that no single model can be
selected as the best model, and the performance of the model varies from month to month
and region to region. The multimodel generally performs well over individual models. The
highest skill score achieved is 0.31. Taken all the 8 regions together, this multimodel
approach shows skills in the monthly predictions in 54%, 46%, 63% and 50% months in the
winter, premonsoon, monsoon and post monsoon season, respectively. The skills scores are
low, but they are positive in 56% of cases. More work is required to improve the
performance of the models.
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Table 1 : Variances associated with different PCs for 8 regions.

PC | AllIndia | Homo- Core |Northwest| West Central | Northeast |Peninsular
India India India Central | northeast | India India
India India

1 394244 | 33.1688 | 32.4107 26.0293 352647 | 34.8815 | 43.8838 36.4829
2 39.4086 33.158 | 32.3917 25.9638 35.243 | 34.8669 | 43.8639 36.4349
3 7.70938 | 11.2841 | 11.1788 13.0069 10.9774 | 10.3192 | 241498 435884
4 7.68105 | 11.2401 | 11.1311 12.9422 109512 | 10.2919 | 241238 428064
5 120224 | 217143 | 2.33024 412222 1.50356 | 1.74815 | 0.995946 2.77131
6 115339 | 212291 | 2.29273 4.08843 1.47122 1.6865 | 0.987686 2.74544
7 0.776372 | 1.28549 | 1.46291 2.53308 | 0.839747 | 1.11773 | 0.977929 2.24754
8 0.569901 | 1.16203 | 1.43381 235886 | 0791834 | 1.07359 | 0.91689 2.21936
Total | 97.92533 | 95.59286 | 94.63199 | 91.04479 | 97.04266 | 95.98547 | 96.45351 | 91.54093

Table 2: The details of EBP models developed for the 8 regions for monthly rainfall

predictions.
Region All- | Homoge-| Core- [ North-| West | Central-| North- | Penin
name India nous India west | Central-| north east sular
India India India east India | India
India
Nu_m.ber of 1428 1428 1428 1428 1428 1428 1428 1428
training patterns
Dt bierof ot 132 132 132 132 132 132 132 132
patterns :
Learning rate 0.05 0.05 0..05 0..05 0..05 0..05 0..05 0..05
MG 0.9 09 0.9 0.9 0.9 0.9 0.9 0.9
coefficient
Number of input 8 8 8 8 8 8 8 8
nodes
Number of
hidden nodes in 10 6 6 10 7 10 4 6
layer one
Number of
hidden node in 12 4 4 12 5 5 3 4
hidden layer two
Number of the
output nodes 1 1 1 1 1 L 1 1
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Table 3: Number of total support vectors used in 8 SVR models.

No Regions Number of support vectors
1 All-India 1423
2 Homogeneous 1427
3 Core-India 1427
4 North-west 1427
5 West central- 1427

India
6 Central northeast 1427
India
7 North-east India 1427
8 Peninsular India 1427

Table 4 : SVR parameters used for the model building.

Model Cost-value Gamma- Epsilon-value | Termination

value criteria

All-India 1 0.5 0.00001 0.00001

I—Iorlnogeneous 8 03 0.00001 0.00001

India

Core-India 61 0.8 0.00001 0.00001

North-west 1 14 0.00001 0.00001

India

Wes-;t central- 10 02 0.00001 0.00001

India

Central

northeast India - - e £

North-east 71 0.3 0.00001 0.00001

India

Pen.msular 1 1 0.00001 0.00001

India

Table 5: Penalty coefficients values used in 8 aiNet models.

Model Penalty coefficient
All-India 0.8390
Homogeneous 0.6951
Core-India 0.6499
North-west 1.4652
West Central-India 0.7040
Central northeast India 14717
North-east India 1.0704
Peninsular India 0.6795
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Table 6 : Distribution of CVs by the three models for the actual and model simulated data for
the 8 regions.

CV (%) Actual | - CV Model
Train Test EBP Train Test
aiNet | 977 98.2
1 | Alllndia | 1054 | 1002 | SVR | 974 93.8
EBP | 1046 | 961
ailNet 123 120.9
SVR | 1202 | 1214
EBP | 1271 | 1271
aiNet | 129 | 1293
3 | Corelndia | 1377 | 1307 | SVR | 1239 | 1253
EBP | 1327 | 1329

aiNet | 1415 | 1167
g | Northowest | Jooe | 1452 | SVR | 1674 | 653
India

EBP | 1071 | 603
aiNet | 1121 | 112

Sr. Regions

Homogeneous | 131.3 | 125.1
India

West central-

5 1202 | 1158 | SVR | 1107 | 1107
a

EBP | 1183 | 1177

e aiNet | 1165 | 117.2

6 northeast 126.0 1222 SVR 114.4 114.8

India EBP | 1222 123

aiNet | 77.6 76.5

g | Northeast | go0 | occ TgurR | 795 79.6
India

EBP | 866 86.6

ailNet 704 69.4
Peninsular

8 . 81.5 79.6 SVR 61.9 64.8
India
EBP 735 75.7
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Table 7 : Comparison of EBP, aiNet and SVR models in simulating monthly rainfall
over 8 regions.

c Mean Standard Deviation
NSQ Regions | Model T;ZJ:I 'Is‘iit Train Test Train Test

Actuall Pred | Actual| Pred | Actual| Pred | Actual | Pred

mm | mm | mm | mm | mm | mm| mm mm

1 |All-India| EBP | 0.964 | 0.967 | 90.88 | 93.24| 91.08 | 92.93 | 95.77 |91.09| 91.26 | 91.28

aiNet | 0.974 [0.9442| 90.88 | 94.34 | 91.08 [97.68 | 95.77 |91.88| 91.26 | 91.61

SVR | 0.867 | 0.836 | 90.88 | 92.37 | 91.08 | 96,55 | 95.77 [96.59| 91.26 | 92.74

2 |Homoge-| EBP | 0.925 | 0.934 | 7243 | 72.78 | 7045 | 71.81 | 95.12 |89.54| 88.15 | 86.85

n;(;: aiNet | 0.959 | 0.945 | 7243 | 72.18 | 70.45 | 7036 | 9512 |86.77| 88.15 | 85.40

SVR | 0.925 | 0.945 | 7243 6?.01 7045 | 68.69 | 95.12 |87.73| 88.15 | 87.33

3 Core- EBP | 0.925 | 0.937 | 80.10 | 81.15| 77.30 | 81.22 | 110.29 [104.68| 101.02 | 105.04

thds aiNet | 0.953 | 0.944 | 80.10 | 80.11| 77.30 | 78.23 | 110.29 | 99.25 | 101.02 | 98.01

SVR | 0.928 | 0.929 | 80.10 | 76.04 | 77.30 | 73.02 | 110.29 [100.90| 101.02 | 97.04

4 | North- EBP | 0.856 | 0.626 | 45.48 | 43.66 | 46.71 | 5224 | 7220 |61.78| 67.80 | 60.94
west India

aiNet | 0.880 | 0.474 | 45.48 | 38.23 | 46.71 |46.82 | 72.20 |63.99| 67.80 | 30.58

SVR | 0.833 | 0.593 | 45.48 | 40.10 | 46.71 |56.99 | 72.20 |42.94| 67.80 | 34.38

5 West EBP | 0.950 | 0.951 |100.13 |101.49( 100.76 |102.40| 120.34 |113.73| 116.64 [114.70

Ceh:lgizlq aiNet | 0.963 | 0.947 |100.13 |100.70| 100.76 {100.23| 120.34 [111.44| 116.64 |110.94

SVR | 0.941 | 0.941 (100.13 | 96.88 | 100.76 | 96.92 | 120.34 (114.58| 116.64 |114.03

6 | Central EBP | 0.959 | 0.944 | 90.20 | 95.66 | 86.11 | 93.60 | 113.66 |111.44{ 105.21 |109.73
Northeast

India aiNet | 0.969 | 0.938 | 90.20 | 90.40 | 86.11 |89.41 | 113.66 [103.40| 105.21 |{102.61

SVR | 0935 | 0.938 | 90.20 | 86.88 | 86.11 | 85.02 | 113.66 [106.15| 105.21 |104.55

7 | North- EBP | 0.934 | 0.913 |172.19|182.35| 177.06 {181.89| 152.85 [141.52| 151.41 |139.21
East India

aiNet | 0.961 | 0.894 (172.19|172.17| 177.06 |172.17| 152.85 (136.90| 151.41 |137.09

SVR | 0.946 | 0.919 |172.19|167.91| 177.06 |166.37| 152.85 (145.33| 151.41 | 144.08

8 |Peninsular| EBP | 0.872 | 0.882 | 96.38 | 98.84 | 102.69 | 99.31 | 78.53 |69.63 | 81.74 | 68.94

S aiNet | 0.948 | 0.856 | 96.38 | 96.60 | 102.69 | 96.26 | 78.53 |59.81| 81.74 | 62.39

SVR | 0.847 | 0.862 | 96.38 | 91.00 | 102.69 | 9259 | 78.53 | 66.84 | 81.74 | 70.13
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Figure 1: A schematic of support vector regression using e-insensitive loss

function.

Figure 2 : An illustration of the probability assumption
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Figure 3 Influence of the paramieter o on the similarity coefficient.
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Figure 4 (a) : Meteorological subdivisions considered for All India (Al)
Rainfall time series. The dots represent the locations of rain gauge
stations. Hatched areas are not considered for rainfall time series
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Figure 4 (b) : Meteorological subdivisions considered for
Homogeneous India (HI) Rainfall time series.
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Figure 4 (c): Meteorological subdivisions considered for Core India (CI)
Rainfall time series.
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Figure 4 (d) : Five macro climatic zones of India. (1) Northwest (NWI) (2) West Central

(WCI) (3) Central north east (CNEI) (4) North east (NEI) and (5) Peninsular (PI) India
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Figure 7a : Predicted and observed monthly rainfalls for some
selected regions and months: (a) Homogeneous India for January by
EBP (b) Central north east India for March by aiNet (c) Peninsular
India for April by aiNet and (d) West central India for July by EBP.
The skill scores are given for each model.
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