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Simulation of Tropical Indian Ocean Surface Circulation

Using a Free Surface Sigma Coordinate Model

Prem Singh* and P. S. Salvekar

Indian Institute of Tropical Meteorology, Pune-411008

ABSTRACT

In the present study the surface circulations in the Tropical Indian
Ocean, obtained from the numerical experiments with a free surface sigma
coordinate multi level ocean model commonly known as POM (Princeton
University Ocean Model) are presented. This model has been originally
developed for estuarian and coastal studies and due to large enhancement of
computational power, only recently it has been applied to climatological
problems. The model domain (35.5°E-99.5°E; 25.5°S-24.5°N) comprises the
Arabian Sea, Bay of Bengal, and Tropical Indian Ocean. The horizontal resolution
is 1°X1° latitude/longitude and vertical 21 levels of sigma coordinates from
surface to bottom of the ocean are considered. The model is spun up for 16 years
to reach quasi steady state. The monthly surface circulation from the model
simulated steady state response is discussed.

Author’s email address: psg@tropmet.res.in
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1 Introduction

Ocean forms a vital component of the climate system. Ocean currents move large
volume of warm and cold water around the globe. The surface circulations play an important
role in the exchange of mass, momentum and energy between the atmosphere and ocean, so the
circulation has an important effect on the climate. The Indian Ocean is unique in that it is
limited in the north by the Asian continent. One consequence of this is that the Arabian Sea is
forced by intense, seasonally reversing monsoon winds. These strong winds force the ocean
locally, and they excite propagating signals (Kelvin and Rossby waves) that travel large
distances and affect the ocean remotely. Thus, with such extraordinary phenomena as the
Somali current, the equatorial jets and others (Tomczak and Godfrey, 1994), the Indian Ocean is
an ideal " laboratory " for oceanographers, involving coastal, equatorial and subtropical ocean
circulations, and the interactions between them.

Numerical ocean models and coupled ocean — atmosphere models (e.g. Delworth et al.
1993), developed in recent years, are major tools used to study interannual and interdecadal
climate variabilities. Most of the previous simulations of the Tropical Indian Ocean, were based
on Bryan-Cox model developed at the Geophysical Fluid Dynamics Laboratory or one and half
layer reduced gravity model. The basin scale 1% layer reduced gravity ocean model has been
proven to simulate realistic observed surface currents on both monthly and seasonal scales as
seen by Behera and Salvekar (1996, 1998). Isopycnal ocean models have also been used for
large-scale simulations of Atlantic Ocean (Oberhuber, 1993). Another type of model used, is
the free surface, bottom following sigma coordinate Princeton Ocean Model (POM), (Blumberg
and Mellor, 1987), which has a turbulence closure scheme for surface and bottom mixed layer
dynamics. This model was originally developed for estuarine and coastal studies and only
recently has been applied to climatological problems. The understanding of the coastal
circulation around India is very crucial for activities viz. navy, fishery, ocean biology, offshore
exploration activities. In this study, POM model is used to simulate the surface circulation of
Tropical Indian Ocean.

1.1 Observed features over Tropical Indian Ocean

The principal driving force for the surface currents in the Tropical Indian Ocean is the wind
stress. The wind drives the ocean both directly and indirectly. Because of the Coriolis force, the
direct forcing results in Ekman drift, by which wind driven current flows to the right of the wind
direction in the Northern Hemisphere and to the left in the Southern Hemisphere. The coriolis
parameter over the equator is zero so the current direction there tends to be directly down -
wind. The reversal in the direction of the Ekman drift relative to the wind direction across the
equator results in divergent flow away from the equator if wind is easterly, convergent if
westerly; divergence leads to upwelling, convergence to downwelling. However, equatorial
upwelling does not occur in the Indian Ocean as it does in the Pacific and Atlantic, because in




those oceans, upwelling occurs as a result of the south-east trade winds blowing across the
equator and causing surface divergence. Since in the Indian Ocean, there is no such wind
system in either season of the year, typical conditions for equatorial upwelling are missing. The
wind affects currents indirectly in two ways, Firstly, the curl of the wind stress produces vertical
motion in the oceanic boundary layer (so - called “Ekman Pumping”), this leads to vertical
displacement of the thermocline, resulting in horizontal density gradients, which in turn
produces geostrophic currents. Secondly, changes in the wind forcing can generate waves in the
surface currents. These waves provide a key mechanism by which information can be
transmitted rapidly within oceans. The equatorial region forms a wave guide for zonally
propagating waves, enabling information to be carried out across a tropical ocean far more
rapidly than at mid latitudes. Rossby waves are the principal mode for westward-propagating
waves and Kelvin and Yanai (mixed Rossby—gravity) waves for eastward propagating
disturbances.

1.2 Monsoon Currents

The monsoon currents extend over the entire basin from Somali coast to the eastern Bay of
Bengal. Different parts of the currents form at different times and it is only in their mature phase
that the currents exist as trans-basin flows. The westward winter monsoon current first forms
south of Sri Lanka in November and is also fed by the equatorward East India Coastal Current
(EICC). The westward winter monsoon current in the Southern Bay appears later. In its mature
phase during December month, the winter monsoon current flows westward across the Southern
Bay; it divides into two branches in the Arabian Sea. One of these branches continues flowing
westwards, whereas the other turns around the Lakshdeep high (a sea-level high off southwest
India) to flow into the poleward west India coastal current. The winter monsoon current is
primarily a geostrophic current, modulated by Ekman drift.

Strong winds during the summer monsoon ensure that Ekman drift dominates at the
surface, leading to a more complex vertical structure in the summer monsoon current than in
winter monsoon current. The eastward flowing summer monsoon current first appears in the
Southern Bay during May. In its mature phase, which peaks with the summer monsoon in July,
the summer monsoon current in the Arabian Sea is a continuation of the Somali current and the
coastal current off Oman. It flows eastward and south eastward across the Arabian Sea and
around the Lakshdeep Low (a sea-level low off southwest India), eastward south of Sri Lanka
and into the Bay of Bengal. The mature phase of the summer monsoon current lasts from May
to September.



2 Brief Model Details

The POM model is a primitive equation model and it contains a second-order turbulence
closure scheme providing the vertical mixing coefficients. The basic equations in sigma
coordinates (Cartesian coordinates in horizontal) are

Continuity equation
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Two more prognostic equations are used to calculate turbulence kinetic energy and turbulence
lengthscale
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wherec = (zn)/(H+m); D=n+H;
n(x,y,t) =  Free surface elevation
H(x,y) =  water depth
T =  temperature
S =  salinity
W =  vertical velocity in sigma coordinate
U,V =  zonal and meridional velocity
g = acceleration due to gravity
i = 2Qsing Coriolis parameter for latitude ¢
Apm, Ky =  horizontal and vertical kinematic viscosity
Ap, Ky, =  horizontal and vertical diffusivity
Kq = turbulence mixing coefficient
q2 =  turbulence kinetic energy
l = turbulence length scale
P = in situ density
Po = reference density
Cs =  speed of sound
Fy, Fy =  horizontal mixing
E;,E3 By =  constants
R =  short wave radiation

W = {1+#E;(1/x L) } is wall proximity function where L ~'=(n-z)" + ( H -z)"!
9B_d_ 20p
oo do ' do

The horizontal viscosity and diffusion terms are defined according to:
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Also,

d b7,
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and where ¢ represents T, S, g2 or q°l

The vertical mixing coefficients Ky and Ky in equations (2), (3), (4), (5) are obtained by
using a second order turbulence closure scheme (Mellor and Yamada 1974).

3 Model Setting and Methodology

The model assumes rectangular coordinate in the horizontal having resolution 1°X°1
lat/lon. The model domain covers 25.5°S to 24.5°N and 35.5°E to 99.5°E. The model uses the
Arakawa 'C’ grid finite differencing scheme. The model has realistic coastline and topography
based on ETOPOS5 data set and is shown in fig.1. As it is known that surface circulation is
mainly dominated by surface winds, the input forcings used in the model are monthly mean
surface wind stress for years 1980-1989 from ECMWF analyses (Trenberth et. al. 1989) as
surface forcing, and annual mean temperature and salinity from Levitus climatology (1994) is
used as internal forcing. The wind stress is available for 2.5°X2.5%at/lon resolution and is
interpolated by using cubic spline technique for the model grid and is shown in fig.2 and Fig.3.
The north easterly winds are dominated over the model region north of equator during
November to March with maximum value of wind stress in January. The intense southwesterly
winds dominate during the month of May to September with maximum values in July-August.
South of equator, windstress is northwestward with its maximum intensity in July. The annual
mean temperature and salinity data is available for Z = 0 to Z = 5500 meter depth is also
interpolated by using cubic spline technique for the vertical model grid.

There are 21 o levels in the vertical between 6 = 0 and 6 = -1 where 6 = (z-1)) / (H+7),
N(x,y) and H(x,y) are the surface elevation and water depth. The vertical resolution is higher
near the surface and lower near the bottom. The horizontal time differencing scheme is explicit,
whereas vertical time differencing scheme is implicit. The model has a split time step; a two
dimensional external mode that uses a short time step of 60 seconds and a three dimensional
internal mode time step of 1800 seconds. We assume that the monthly mean wind data
represents the value at middle of representative month and then linearly interpolated to get input
at model time steps. The model integration is carried out for 16 years to reach quasi steady state.
Results of the steady state response are discussed below.



4 Results and Discussion

The aim of the present study is to determine the effect of wind forcing on monthly surface
circulation in the model domain. Further, the seasonal cycle of surface circulation is also
examined. The model simulation of the seasonal cycle is compared with estimates of current
climatology from observations. The schematic surface circulation of Tropical Indian Ocean is
shown in fig.4 for winter and summer seasons. The current climatologies used are those given
by Hastenrath (1985) and an analysis by Rao et al (1989) of the ship-drift data-set produced by
Cutler and Swallow (1984) are shown in fig.5. The principal features of the Indian Ocean
circulation are well reproduced by the model in response to forcing by seasonally varying
climatological winds.

The main features in the summer season are Somali Current (SC), South West Monsoon
Current, South Equatorial current etc. and in the winter season North Equatorial current,
Equatorial counter current, South Equatorial current, East India Coastal Current (EICC), West
India Coastal Current (WICC). On account of the seasonal reversal of the wind on the northern
part of Indian Ocean, the general scheme of its surface circulation differs from winter to
summer. From November to March i.e. NE Monsoon, the winds blow from the north — east and
during May to September i.e. SW Monsoon, the wind blow from the southwest. The change of
wind direction north of equator then results in a change of surface current. The month wise
simulated currents are presented in Fig.6 to Fig.11 and are discussed with reference to the
observed climatological features of the Tropical Indian Ocean.

4.1 Equatorial Currents

South Equatorial Current

A broad westward flowing SEC is seen in most of the climatological charts between
8°S and 20° S almost throughout the year. The westward flowing currents (SEC) between 10°S.
and 20° S can be generally seen almost throughout the year in the model simulation.

North Equatorial current and Somali Current

The model produced NEC is seen to change the direction four times in a year flowing
eastward during summer monsoon. The January and February (Fig.6) charts show the northeast
monsoon situation. At this time of the year the wind field mostly resembles the trade wind
systems of the other two oceans. There is generally a westward flow of the northeast monsoon
current in the Northern Hemisphere extending up to 2°S. It deflects into moderate, generally
southwestward current along the Somali coast. An eastward equatorial counter current exist in
the Southern Hemisphere between 2S° to 8°S.




In April the establishment of strong eastward jet within few degrees of equator in the
central and eastern part of the Indian Ocean. This arises as direct response to the moderate
equatorial westerlies as noted by Wyrtki (1973). The strong ocean response to these moderate
winds is due to weak coriolis force.

During boreal winter the winds are northeasterly in the north Indian Ocean and the Somali
current along the Somali coast flows southward. This is seen in the model simulated January
circulation. The flow is from 5°N to equator in November and the flow is moved further south
till 5°S in January (Fig.6). These features are in qualitative agreement with the observed
climatological atlases Duing (1970), Wyrtki (1971) Hasternath and Greischar (1989), Rao et al
(1991) and the model results of Luther and O'Brien (1989), Woodbery et al (1989). During
spring season (prior to SW monsoon) the surface current along Somali coast starts flowing
northward. The model results suggest northward flow north of 5°N in March and northward
along the coast in April. This is in good agreement with the results reported by Schott and
Quadfasel (1982). As the southward flowing Somali current disappears in April and wind starts
blowing southward, the East African coastal current reaches equator. An anticyclonic gyre south
of the equator is simulated in winter season (Figl1 and Fig.1). This gyre forms when Somali
current that flows southward joins the northward flowing East African coastal Current (EACC).
The southward flowing Somali Current in the winter months (Nov, Dec, Jan) disappears in
March (Fig.7).

With the onset of the South -West monsoon an anti cyclonic gyre, the great whirl develops
from 4°N-10°N by June (Fig.8), which per3ists throughout the monsoon. In the late phase of
monsoon, the Great whirl has become an almost closed circulation cell in Aug. and Sep. (Fig.8
and Fig.9). In summer by July and August, the fully developed southwest monsoon drives the
eastward flow in the northern ocean. This is called as monsoon current. This feature is clearly
simulated in the present study. The North equatorial current, seen in the winter season
disappears and equatorial counter current moves in north of the equator. This fact is clearly
simulated in the present study. The model SEC flows directly to the east coast of Madagascar as
the model geometry does not include the small island east of Madagascar. It splits near
Madagascar coast near 17°S which is in agreement with observation (Schott et. al. 1988). One
branch flows south and the other flows north. The northward branch again splits at the African
coast and the northward flowing part feeds EACC and the southward flowing part is known as
Mozambique current.

4.2 Bay of Bengal

As in the case of Somali Current the East India Coastal Current (EICC) also reverses
direction twice a year flowing North Eastward from February until September with a strong
peak in March-April and southwestward from October to January with strongest flow in
November. Large basin wide anticyclonic gyre in winter and spring i.e. December to April is
seen in the Bay, which agree very well with model studies of Potemra (1991). The gyre has
northward flow along east coast north of 15°N in December (Fig.11) and all along east coast in
the other months (Jan-April). During summer months, northward flow along east coast is in
agreement with the ship drift observation.



4.3 West Indian Coastal Current

The circulation in the interior Arabian is mostly in Sverdrup balance throughout the year
i.e. the flow is southward in summer and northward in winter. The circulation features along
west coast of India are opposite to that of the wind direction. Cutler and Swallow (1984) ;
Shetye and Shenoy (1988) using the ship drift observations suggested a southward flow that
appears along the west coast of India in March, reaches a maximum in July and vanishes by
October. This is called the West India Coastal Current WICC and it changes its direction
seasonally. This feature is clearly seen in fig. 8 and fig.11.

WICC flows northward during the winter monsoon (fig.10 and fig.11). The ship-drift
currents indicated that the northward WICC at this time is the strongest west coastal current
throughout the year, and yet the coastal winds are very weak or absent at this time. This
property lends strong support for the importance of remote forcing.

5 Conclusions

This study examines the seasonal cycle of surface circulations in the Tropical Indian Ocean
as simulated by a 3-D ocean model. The ocean currents in the Tropical Indian Ocean are
primarily driven by the seasonally reversing monsoonal circulations, which make them different
from circulation patterns in the Pacific and Atlantic oceans. The main features of the Tropical
Indian Ocean circulation (South Equatorial Current, North Equatorial current and Somali
Current, Bay of Bengal, West Indian Coastal Current) are found to be well simulated by the
model. The interannual variability in the upper layer circulation as simulated by POM model
will be addressed in the next part of the study.
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Fig. 4 Observed surface of circulation, as described in the literature , in the Indian
Ocean during winter monsoon and summer monsoon.
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