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1. Introduction 

The loss in prediction skill of a climate forecast system as the lead-time advances from a 

starting time is a hurdle that every forecaster face while dealing with real-time forecast since 

ǘƘŜ ǘƛƳŜ ƻŦ wƛŎƘŀǊŘǎƻƴΩǎ ŜŦŦƻǊǘ ǘƻ ŦƻǊŜŎŀǎǘ ƳƛŘ-latitude weather in the 1940s and 1950s 

(Charney et al. 1950; Macrae 1999). The cause is well known: from the effect of noise to non-

linearity to the chaotic evolution of predictands all could lead to this loss of mathematical 

foresight to a great extent (Lorenz 1963, 1965; Palmer 1993; Lorenz 1993; Eriksson et al. 2004).  

Theories to improve the prediction skill in real-time, however, are not many and mainly 

depends on criteria to improve initial and boundary conditions in the seasonal forecasting 

models (Reichler and Roads 2003; Palmer and Anderson 1994). For operational seasonal 

prediction (3-4 monthly averaged forecast), Charney-Shukla Hypothesis is a well studied one 

and is applicable to tropical climate forecast (Charney and Shukla 1981; Shukla 1998). For 

operational weather prediction (up to five to seven days), improving the initial condition to run 

a forecast model ōŀǎŜŘ ƻƴ [ƻǊŜƴȊΩǎ ƘȅǇƻǘƘŜǎƛǎ ƛǎ ŀƭǎƻ ǿŜƭƭ ŜȄǇƭƻǊŜŘ (Palmer et al. 2005; Palmer 

1993; Bauer et al. 2015). In these scales, forecasts of several features are improved a lot as 

compared to the skill existing at the time when it was first conjectured more than a century ago 

(Abbe 1901; Bauer et al. 2015). However, once the forecast horizon is expanded beyond 

weather scale, but is much less than the seasonal scale, skill of forecast gets worse and in spite 

of existence of theoretical predictability of intraseasonal scale, models do struggle to perform 

well under various situations (Jung et al. 2010; Baldwin 2003; Palmer 1993; Palmer et al. 1990). 

For operational purpose prediction beyond weather scale, especially prediction in the extended 

range time-scale (primarily 15-20 day in advance but could be taken as time-scale less than a 
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month) requires special mention which by far has given strong hope for predicting 

intraseasonal oscillations owing to existence of theoretical and operational predictability of 

Madden-Julian Oscillations or MJOs (Waliser et al. 2003a,b; Vitart 2014; Vitart et al. 2007) and 

monsoon intraseasonal oscillation or MISOs (Goswami and Xavier 2003; Neena and Goswami 

2010; Chattopadhyay et al. 2008). 

In the intermediate extended range time-scale, while the role of the initial condition is 

undisputed (Palmer 1993; Jung et al. 2010), the role of boundary condition e.g. air-sea 

interaction and sea surface temperature is also recently been shown to be important (Abhilash 

et al. 2014, 2015). A bias-corrected sea surface temperature (SST) from a coupled general 

circulation model (CGCM )used as an input to atmospheric component of the same general 

circulation model (AGCM), for example, can be important in improving the extended range 

prediction skill when implemented in a multi-model and multi-ensemble (MME) framework 

(Sahai et al. 2015). 

Statistical studies on extended range prediction as well as predictability of atmospheric 

flow give emphasis on the role of non-linearity and role of stochasticity/chaos as the main 

sources of the problem(Goswami and Xavier 2003; Webster and Hoyos 2004; Borah et al. 2013). 

In this context, the role of initial conditions becomes important. Initial conditions could 

determine the asymmetric or non-identical temporal evolution from one state of initialization 

to another. For example, low rainfall states (or negative departures from climatology or the 

break phases) could be more predictable than a prediction of higher rainfall states (or the 
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positive departures from climatology or the active phases)(Goswami and Xavier 2003; 

Taraphdar et al. 2010).  

Initial conditions could be considered as the instantaneous weather information from 

which a forecast model start running. The growth rate of error from an initial condition with the 

advancement of the lead-time is traditionally assumed to be exponential (until they saturate) 

from any initial state. That is the null hypothesis is, whatever the initial weather state is, error 

from multiple forecast runs should increase with more or less similar ǇƻǎƛǘƛǾŜ άaccelerationέ 

with lead-time or the errors come from a similar statistical distribution.  

Is this conclusion true under all circumstances? There is no clear evidence so far that 

how statistically certain initial conditions could be more predictable than the other, although 

experiments with initial conditions say so (Toth and Kalnay 1993; Palmer 2000). Or in other 

words, certain instantaneous weather states used as input to the model as initial conditions 

have more memory than the other so that error grows at less positive acceleration rate leading 

to longer memory process. The assumption is that the techniques should be made available so 

that the initial conditions generated through data assimilation should nudge more closely to the 

άǊŜŀƭέ ǿŜŀǘƘŜǊ ǎǘŀǘŜΦ The possibility arises that there could be cases when the initialization 

(assimilation) method is more efficient than some other cases. These more efficient states or 

long memory initial states could be due to the role of boundary condition in the form of air-sea 

interactions in the extended range scale rather than a random initial condition.  

Based on the recently developed extended range prediction framework at Indian 

Institute of Tropical Meteorology (IITM) forecasting of Indian summer monsoon in the extended 
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range has been recently made operational by Indian Meteorological Department. Operational 

predictions would be more useful if a systematic statistics of long memory initial states are 

given.   Clear and quantitative demonstrations of these long memory initial states for the Indian 

summer monsoon season are still missing. If some states (initial conditions) have systematic 

long memory, those could be giving a systematic improvement in prediction skill. This could be 

important for monsoon forecasts as it would help the operational forecasters in assigning 

confidence metric to their forecasts for those initial states which have systematic long 

memories.   

In this study we wish to substantiate this feature of existence of some initial states with 

systematic long memories in monsoon forecast and try to link it with climatological mean state 

of monsoon: larger predictability could be achieved in extended range prediction during June 

and September (traditionally low (monthly) mean rainfall but having strong amplitude of 

intraseasonal oscillation (ISO) variance) than the July and August (with high mean rainfall and 

high ISO variance). This variation of extended range prediction skill is independent of modeling 

framework as we show this result based on the NCEP-US based CFSv2 derived extended range 

forecast run at IITM and the ECMWF based extended range forecast. ECMWF forecasts have 

shown large improvements in operational skill due to a reduction in the initial condition error 

together with model improvements(Magnusson and Kallen 2013). Hence the similarity in the 

monthly variation in extended range prediction skill that is independent of modeling framework 

raises the question on whether the physical processes represented in the model are sufficient 

to represent seasonal mean monsoon during the peak monsoon season over Indian region. 

While the answer to this question is not simple, the evidence those are presented here are 
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overwhelming that the error growth of the monsoon extended range forecast system when it is 

in seasonally peak phase is not well understood. Additionally, the study induces hope of better 

quantification of extended range prediction of monsoon on regional scales, which are often 

important for several operational purposes. 

2. Data, Model, and Methods 

The World Weather Research Programme/World Climate Research Programme 

(WWRP/WCRP) has initiated the program on subseasonal to seasonal (S2S) prediction with an 

objective to understand the subseasonal to seasonal timescale and the forecast skill (Vitart et 

al. 2016). With an aim to understand and compare the prediction skill of IITM ERPS, we have 

considered the S2S ECMWF ensemble forecast (CY41R2 version) data (hereafter ECMF ENS) 

which has 11 ensemble members. In this study, we have considered from May 11th to Sep 28th 

reforecast for 14 years (2001-2014). 

The IITM ERPS use the National Centre for Environmental Prediction, US (NCEP) Climate 

Forecast System model (CFS) version 2 (Saha et al. 2014), the coupled model and the 

atmospheric model in CFS namely the Global Forecast System (GFS) forced with the bias-

corrected CFS-forecasted SST (hereafter GFSbc) at two resolutions: at T126 (CFS126) and at 

T382 (CFS382) spectral truncations. The analyses for creating the initial conditions for the 

model are obtained from NCDC server of National Center for Environmental Information (NCEI), 

USA. It is then perturbed and a pull of initial condition (IC) is created for each of the ensembles. 

The perturbation method essentially is derived based on adding random numbers to each grid 

point tendency term for any variable of interest …: … ὼȟώȟᾀȟὸ …ὼȟώȟᾀȟὸ 
ȟȟȟ

.  h  
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is a small random number (-1<ʰғм). For more details refer Abhilash et al., (2013) and Abhilash 

et al., (2015). The IC generation method follows similar logic as defined in (Buizza et al. 1999). 

To compare evenly with ECMF ENS, the total number of ensembles members considered 

for computing the multi-model multi-ensemble (MME) from IITM forecast runs in this study is 

11: 3 from each of CFS126, CFS382  and GFSbc126  (one run is using unperturbed original 

analysis and two using perturbed analysis)  and  2 from GFSbc382 (one run is using  

unperturbed original analysis and one using perturbed analysis).The unperturbed or the control 

run is made by directly using the real-time analysis IC downloaded from NCEP, defining the CFS 

based Grand Ensemble Prediction System (CGEPS) runs which also referred as IITM MME 

hereafter. Abhilash et.al. [2015] has demonstrated that in the IITM MME skill, spread-error 

relationship and the probabilistic prediction of active (above normal) spells, break (below 

normal) spells has improved. The reforecast or hindcast is made for the whole monsoon season 

(June to September) for the years 2001-2014 starting with 16th May for any year and prediction 

is given for next 45 days. Model run is made after every five-day interval. In this paper apart 

from IITM MME, individual models (CFS126, CFS382) are also considered to investigate the role 

of individual NCEP-CFS/GFS model fidelity on the skill. While comparing the individual model to 

ECMWF forecast runs, the same 11 members of the individual model (CFS126, CFS382) are 

considered. 

The IITM MME forecast runs with a five-day interval from May 16 of every year for 45 

days, while the ECMWF runs every Monday/ Thursday of the week of that year on the fly. 

Following this, the numbers of forecast dates are 31 and 41 for IITM and ECMWF respectively 
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with the exactly matching dates are 8.  For the dates where the ECMF forecast initial date does 

not match and has a lead of 1 /2/3 days with respect to the IITM MME, then the corresponding 

forecasted lead days (1/2/3) of IITM MME are matched with the dates of ECMF respectively to 

be assumed as the forecast start date. The skill plots at a time will be shown by five days 

(pentad) averaging as has been used in several earlier studies based on this model. Thus 

forecast at pentad 1 (P1) will be defined as the average of forecasts for the days from 1-5, 

similarly, for P2, it is forecast average for lead day 6-10 and so on. 

¢ƘŜ ǾŜǊƛŦƛŎŀǘƛƻƴ ƻŦ ŦƻǊŜŎŀǎǘ ǎƪƛƭƭ ƛǎ ƳŀŘŜ ǳǎƛƴƎ LƴŘƛŀ aŜǘŜƻǊƻƭƻƎƛŎŀƭ 5ŜǇŀǊǘƳŜƴǘΩǎ όLa5ύ 

station data that is gridded and merged with TRMM derived rainfall data. This IMD-TRMM 

merged rainfall data (Mitra et al. 2009) is used ŀǎ άƻōǎŜǊǾŀǘƛƻƴέ ŘŀǘŀΦ  

3. Results  

The skills of the individual component of the models (CFS126 and CFS382) are compared 

with ECMF ENS in Fig.1. The plot shows the skill over 4 homogeneous regions (refer 

supplementary Figure S1), namely Monsoon Zone of India (MZI), North East India (NEI), 

Southern Peninsular India (SPI) and Northwest India (NWI). It may be seen that the skills of 

extended range forecast in pentad P3, P4 and P5 is much improved in ECMF ENS than the IITM-

CFST126 or the IITM-CFST382 for the MZI, NEI and the SPI. Over NWI, it is not significantly 

different in IITM CFS run and the ECMF ENS run. If CFS126 is compared with CFS382 for these 

homogeneous regions we can see that the skill up to P3 lead-time is improved in the high 

resolution (CFS382) run as compared to the low resolution or CFS126 run. For the 4th and 5th 

pentad forecast, the skill is comparable in CFS126 and CFS382, although the correlation is 
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markedly low as compared to P1 lead-time.  For NWI CFS382 is better up to P4 lead-time. The 

lack of skill of the individual component model in IITM CFS run is partly overcome when a multi-

model and multi-ensemble version of the forecast is created. We plot the same in Fig.2, which 

shows the skill for the result from MME version of the run. The MME is created by taking simple 

averaging of all the 11 ensemble members. It may be seen that the skill is improved and is 

comparable to ECMF ENS run up to the fifth pentad over monsoon zone (MZI) and northwest 

India (NWI). The skill is considerably improved and is comparable to ECMF over north east India 

(NEI) up to the third pentad in advance. ECMF ENS shows considerable skill in 4th and 5th pentad 

over NEI. Over the south peninsular part of India (SPI), the ECMF skill is comparatively better in 

all the 5 pentads shown here. The improvement in skill is coming solely due to the creation of 

MME and not due to bias-corrected SST-forced run of GFSbc alone. The skills of GFSbc are not 

always better (especially over the ocean). That the best skill is achievable only through MME 

and not due to an individual component of the model is already demonstrated in (Abhilash et 

al. 2014). 

The deterministic skill as discussed above may not be very useful when skill score is low. We 

next show a probabilistic skill score (the briar skill score) which is given in Fig. 3. Brier skill score 

is computed by taking an equal number of ensemble members (eleven) for each of the 

component models (CFS126 and CFS382). Only the MME version (IITM MME) is created by 

taking lesser number of ensemble members from each model but totaling to eleven to make it 

comparable with ECMF ENS. So each bar is computed based on equal sample size. For the 

above normal category, the skill at 3rd and 4th pentad are comparable, although ECMF has 
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better skill in first two pentad lead-time. Similarly, for below normal category, the 3rd and 4th 

pentad forecast compare well with the ECMF ENS forecast. 

In order to gain an insight of the prediction of the large-scale fields, monsoon intraseasonal 

oscillations (MISOs) are considered next. Predictions of MISOs are important component of any 

extended range forecasting system as its quasi-periodicity provides the forecast skill beyond 

weather scale which has several practical applications and has been attempted in the past 

through statistical and dynamical models (Goswami and Xavier 2003; Chattopadhyay et al. 

2008; Webster and Hoyos 2004; Sahai et al. 2015, 2013). Like the real-time multivariate RMM1 

and RMM2 indices of MJO (Wheeler and Hendon 2004), the prediction of the large scale 

structure of the MISO is obtained based on the multivariate MISO1 and MISO2 indices derived 

from principal components of the extended empirical orthogonal function approach (Suhas et 

al. 2012). We plot the bivariate correlation and bivariate RMSE of MISO1 and MISO2 indices in 

Fig.4 using the similar approach as defined for RMM1 and RMM2 to indicate the skill of MJO 

(Lin et al. 2008). The bivariate correlation plot (Fig.4a) shows that, although the IITM MME 

improved the lead time of prediction by 4 days (14 days to 18 days when skill falls below 

significance line) as compared to the individual component models, it is still less skillful than the 

ECMF ENS. The same is true for the evolution of bivariate root mean square error (RMSE), 

which is shown as solid curves in Fig.4b. The RMSE of IITM and ECMF run diverges faster after 

5-6 days with IITM MME shows larger growth of RMSE on a particular forecast day as compared 

to the ECMF ENS forecast. The inter-ensemble spread for the IITM and ECMF forecast systems, 

however, grows at the same rate until 16-17 days. After that, however, the spread of IITM 

forecast system increases while the ECMF ENS forecast system grows at a slower rate as 
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compared to IITM forecast system. Since the spread of IITM MME grows faster, the ratio 

RMSE/spread of both the forecast gets comparable to each other. Since the ratio is an indicator 

of the signal to noise ratio, it shows that at large lead time, the skills tend to become 

comparable to each other. 

3.1 Monthwise Forecast Skill 

The month wise forecast skill for the IITM MME and the ECMF ENS are shown in Fig.5. It 

is clear from the plot that at all lead time and for both the IITM and ECMF ENS shows a 

reduction in prediction skill for the month of July and August as compared to the month of June 

and September.  The reduction in forecast skill indicates that during the peak monsoon months 

of July and August, when the convective activities are statistically higher in occurrences with 

very large scale convection and convective cloudiness prevails over the subcontinent, the 

models fail to capture the same feature. Since, this is true for both ECMF ENS and IITM MME, 

which have very different physics and parameterization, it is speculated  that forecast runs from 

both the versions may have the systematic errors of similar nature. During monsoon multi-scale 

organization of convection is a common feature and occasionally it is seen that the synoptic 

events are clustered within the monsoon intraseasonal oscillations (Goswami et al. 2003). Rain 

bearing systems in different scales organize in different space and time scales. Such multi-scale 

organization is more evident in tropical intraseasonal oscillations and forcing of the seasonal 

cycle to intraseasonal oscillations in tropics is hypothesized  (Moncrieff et al. 2012). Since the 

seasonal forcing is strong during July and August and statistically monsoon intraseasonal 

oscillations and synoptic scales are also strong  during monsoon season (~50 percent of 
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seasonal mean , (Goswami and Mohan 2001; Goswami et al. 2003; Qi et al. 2008)), these scales 

can interact strongly and small scale system can grow more efficiently than June and 

September. Since small-scale systems are inherently having less prediction horizon, the July and 

August are less predictable than June and September. This reduction in skill is formally 

discussed in Sec.4. 

3.2 Comparison of monthly Forecasts over IMD subdivisions  

P1, P2, P3 and P4 forecasts for various subdivisions during JJAS (June to September 

average) are shown in Fig.6. Fig.7-10 shows the same plot but for the month of June, July 

August and September. For the JJAS season as a whole (Fig.6), the IITM MME forecast skill 

pattern looks similar to ECMF ENS. ECMF ENS forecasts, however, shows better skills in the 

subdivisions of Northeast India during P4 lead-time forecast. The monthly stratified skill plots in 

Fig.7-10 shows that for the month of June and September IITM MME system shows better skill 

over few more subdivisions as compared to ECMF ENS during P3-P4 lead-time. Also, during July 

and August, the skill is same for both the models. Another thing is notable that except for the 

month of June, the larger lead-time (e.g. P4) has no predictability in the east-coastal region and 

the adjoining subdivisions. Such east-west asymmetry in predictability in both the modeling 

framework is intriguing. East coast receives most rainfall through Bay-of-Bengal systems which 

are typically cyclonic storms and low-pressure systems such as depressions which are 

inherently less predictable in longer lead-time. So if the deterministic predictability over these 

subdivisions is less, it is clear that probabilistic approach would be the most suitable approach 

for these regions in the extended range. 
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3.3 Signal to Noise ratio and Predictability of MMEs in monthly as well as 

seasonal scale 

The month wise and subdivision wise plot for the day when the signal falls below noise 

level is shown in Fig. 11. The top panels are for ECMF runs and the bottom panels are for IITM 

runs. The red colors denote the predictability below 8 days or in the weather range. The Blue 

shades show the predictability above 12 days and the white shades show the predictability 

intermediate between these ranges. It is clear that the noise crosses signal much earlier in 

ECMF runs than IITM runs in most of the subdivisions during June to September. It is clear that 

for the runs initialized June and September more subdivisions are predictable in the longer 

range than the July and August runs. Of all the subdivisions the signal remains stronger over 

North West India and South peninsular India for longer lead-time. 

 

4. Probable Reasons related to loss in operational predictability 

The results as shown above, clearly indicates that for intraseasonal extended range 

forecast, there is similar monthly variation in forecast skill in two different modeling 

frameworks. The growth of errors from June and September are much slower and noise crosses 

signal at longer lead times than July and August. This could be related to the fact that there is 

increased frequency of "wet spells" during July and August reducing the spatial coherence of 

rainfall pattern during these months (Moron et al. 2017). These probable reasons are discussed 

below: 
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4.1  Predictability variability due to inherent Monsoon Annual Cycle 

July and August are vigorous monsoon months with several small scales systems (monsoon 

depressions, lows, and cyclones) form regularly during these two months over the Bay of 

Bengal. Recently, several studies provide different aspects of evidence regarding predictability 

during monsoon season. It was shown that the potential predictability limit is large (20-30 days) 

over Indian region (Neena and Goswami 2010) considering the JJAS season as a whole. 

However a study by Moron et al., (2017) ōŀǎŜŘ ƻƴ ƻōǎŜǊǾŀǘƛƻƴ ƛƴŘƛŎŀǘŜǎ άspatial coherence and 

correlations between local rainfall and the regional scale monsoon circulation decrease during 

the core phase of the monsoon between early July and late August.Φέ. Such changes in spatial 

coherence, its link with large-scale circulation and its months variations for subregions of India 

as shown in this study indicates that the spatial scale of formation and interaction of monsoon 

system with the subgrid or local scale varies from month to month thereby could a cause of 

reduction in the actual predictability of the system.  

4.2 Predictability variability due to internal dynamics of MISO 

 Since the predictability in the extended range primarily arises due to intraseasonal oscillations, 

characteristics of monsoon intraseasonal oscillations during July and August could be important 

for predictions. A recent study (Li et al. 2016) shows that as the seasonal mean progresses, the 

strength, propagation characteristics and intensity of the monsoon intraseasonal oscillations 

over the Arabian sea also changes (stronger in June and September and weaker in July and 

August) which could affect the predictability in July and August when more dominant tropical 

disturbances (monsoon lows and depressions) with lower predictability dominate. It is, 
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therefore, necessary to have proper representation of the regional features of monsoon 

intraseasonal oscillations in operational models during all the monsoon months.  In the light of 

this, it may be seen that the operational predictability limit can be improved for most of the 

subdivisions over Indian region if the monthly variation in intraseasonal oscillations is captured 

correctly. 

4.3  Predictability variability due to scale interaction and large-scale teleconnection 

The reduction of skill during July and August is evident in both the IITM MME and ECMF ENS 

models which are run with different frameworks and assumptions. Since synoptic scales could 

be the roadblock to the prediction of large-scale northward propagating intraseasonal 

oscillations and there are evidence of scale interactions (De 2010) in monsoon, with the 

preferential growth of synoptic lows and depressions are favored during July and August, it is 

possible that such scale interaction could be a possible roadblock for sub seasonal extended 

range forecast that is yet to be accounted for (Taraphdar et al. 2016). In the month wise 

context, enhance skill in September (or end of the monsoon season) is worth noting. The 

reason of extended predictability in September could be related to simultaneous ENSO-

monsoon relationship during which the association started getting particularly stronger on or 

after  September (Prasad and Singh 1996; Kirtman and Shukla 2000) and Indian Ocean Dipole 

and the equatorial Indian Ocean wind mode (IOD/EQUINOO) forcing which also mainly strong in 

September or the end of the season (Pokhrel et al. 2012; Ashok et al. 2004; Nanjundiah et al. 

2013). 
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5. Discussion 

This study has compared the prediction skill of both IITM MME and ECMF ENS runs from the 

perspective of both global (large scale intraseasonal oscillations) and regional forecasting. The 

bivariate correlations and root mean square errors are computed for the large scale MISO and 

the correlations for the larger monsoon zones are also shown for the regions where MISO is 

more active. Similarly, we have computed the subdivision wise correlation skill to get an idea of 

the regional implications of the extended range forecast. As of the latest version in IITM MME 

forecast runs, it is clear that the operational predictability is enhanced beyond ten days for 

many subdivision for all the monsoon months for northwest India and several subdivisions of 

west-central India and parts of peninsular India.  

The improvement in predictability beyond the medium range at the sub-divisional level 

is an important operational milestone for the forecast of Indian summer monsoon. The 

extended range prediction system of IITM MME is addressing two challenging issues at the 

same time. First, it is taking care of uncertainty in the initial condition through a multi-model 

and multi-ensemble strategy based on the same model. Secondly, the biases in air-sea 

interaction flux are corrected significantly through the bias corrected GFS runs. This second 

result is important in the sense that in the coupled model assumptions, there is no direct 

control over the errors, whereas in the bias controlled GFS runs the climatological GFS bias is 

decreased when forced with bias corrected sea surface temperature. The paper thus clearly 

indicates that for operational prediction in the extended range such errors in large-scale fields 

ƳƻǊŜ ŜŦŦŜŎǘƛǾŜƭȅ άŎƻƭƭǳŘŜǎέ ǘƘŜ ŜȄǘŜƴŘŜŘ ǊŀƴƎŜ ŦƻǊŜŎŀǎǘΦ IŜƴŎŜ ōƛŀǎ ŎƻǊǊŜŎǘƛƻƴ ƻŦ large-scale 
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boundary conditions has to be an integral part of extended range forecast system. 

Nevertheless, since monsoon rainfall impacts food grain production over Indian region 

throughout the year (Selvaraju 2003; Abrol and Gadgil 1999) and if June forecast is important 

for summer (Kharif) crops(rice), the September rainfall is important for winter(rabi) crops (e.g. 

wheat and chickpea), the extended range operational skill during June and September could 

also be effectively used for crop (agriculture) outlook.  

Finally, a natural question arises if it is possible to increase the skill more by making a 

grand average taking both IITM MME and ECMF ENS forecast. The grand ensemble average (i.e. 

average of IITM MME forecast runs and ECMF ENS forecast runs) skill and the skill of IITM MME 

and ECMF ENS are plotted in Fig.12 (top panel) for the MZI region. It may be seen that the 

increase in skill due to grand ensemble average is seen beyond the P2 lead time which adds 

operational value to the forecast. The root means square skill score (rmss) is also shown along 

the opposite ordinate (line plots), which also shows improvement in skill in higher lead-time as 

compared to the individual components. The Brier skill score (BSS) is also plotted in the bottom 

panel of Fig.12. The plot also shows improvement in the 3rd and 4th pentad as shown in the 

deterministic plot in the top panel.  Nevertheless, such grand ensemble averaged operational 

forecasts initialized from synchronized ICs would help to bring out the maximum derivable real-

time skill from the model. 
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6. Conclusions 

The current study compares the skill of IITM generated real-time forecast with that of the skill 

of ECMF forecast over different spatial scales and different months during the monsoon season. 

The most important conclusion from this comparison is that the IITM forecast, when combined 

as a MME forecast, can give a skill comparable to ECMF forecast as compared to the 

observation over most of the meteorological subdivision during the monsoon months of June to 

September. The other important conclusion is that the skill in both the models is reduced 

during the peak monsoon months (July and August). Both the models are run with the 

independent framework and have independent parameterization schemes; in spite of this, they 

show similar variation in skill when monthly variation in skill is considered. Such reduced skill 

could be attributed to the high spatial variance of monsoon rainfall during the month of July 

and August. Thus, the dependence of skill in the climatological mean state of monsoon in two 

models requires future attention. 

  



18 
 

Acknowledgments The authors wish to thankfully acknowledge Dr. Andrew Robertson, IRI 

(Columbia, US) and Dr. Frederic Vitart, ECMWF for their helpful comments and suggestion in 

writing the manuscript. IITM is fully supported by the Ministry of Earth Sciences Govt. India, 

New Delhi.  We thank NCEP, US for analysis datasets and technical support on CFS model. This 

work is based on S2S data. S2S is a joint initiative of the World Weather Research Programme 

(WWRP) and the World Climate Research Programme (WCRP). The original S2S database is 

hosted at ECMWF as an extension of the TIGGE database. We also thank IMD for TRMM and 

Rain-gauge-merged daily rainfall data.  

  



19 
 

References 

Abbe, C., 1901: The physical basis of long-range weather forecasts. Mon. Weather Rev., 29, 
551ς561, doi:10.1175/1520-0493(1901)29[551c:TPBOLW]2.0.CO;2. 

Abhilash, S., A. K. Sahai, S. Pattnaik, and S. De, 2013: Predictability during active break phases of 
Indian summer monsoon in an ensemble prediction system using climate forecast 
system. J. Atmospheric Sol.-Terr. Phys., 100ς101, 13ς23, 
doi:10.1016/j.jastp.2013.03.017. 

Abhilash, S., A. K. Sahai, N. Borah, R. Chattopadhyay, S. Joseph, S. Sharmila, S. De, and B. N. 
Goswami, 2014: Does bias correction in the forecasted SST improve the extended range 
prediction skill of active-break spells of Indian summer monsoon rainfall? Atmospheric 
Sci. Lett., 15, 114ς119, doi:10.1002/asl2.477. 

Abhilash, S., and Coauthors, 2015: Improved Spread-Error Relationship and Probabilistic 
Prediction from CFS based Grand Ensemble Prediction System. J Appl Meteor Clim., 
1569ς1578. 

Abrol, Y. P., and S. Gadgil, 1999: Rice, in a variable climate. APC Publications, 260 pp. 

Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and Combined Influences of 
ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim., 17, 3141ς
3155, doi:10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2. 

Baldwin, M. P., 2003: Stratospheric Memory and Skill of Extended-Range Weather Forecasts. 
Science, 301, 636ς640, doi:10.1126/science.1087143. 

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather 
prediction. Nature, 525, 47ς55, doi:10.1038/nature14956. 

Borah, N., A. K. Sahai, R. Chattopadhyay, S. Joseph, S. Abhilash, and B. N. Goswami, 2013: A self-
organizing mapςbased ensemble forecast system for extended range prediction of 
active/break cycles of Indian summer monsoon. J. Geophys. Res. Atmospheres, 118, 
9022ς9034, doi:10.1002/jgrd.50688. 

Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties 
in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc., 125, 2887ς2908, 
doi:10.1002/qj.49712556006. 

Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics, Cambridge 
University Press, 99ς109. 

Charney, J. G., R. Fjörtoft, and J. Von NEUMANN, 1950: Numerical Integration of the Barotropic 
Vorticity Equation. Tellus, 2, 237ς254, doi:10.1111/j.2153-3490.1950.tb00336.x. 



20 
 

Chattopadhyay, R., A. K, and B. . Goswami, 2008: Objective Identification of Nonlinear 
Convectively Coupled Phases of Monsoon Intraseasonal Oscillation: Implications for 
Prediction. J Atmos Sci, 65, 1549ς1569. 

De, S., 2010: Role of nonlinear scale interactions in limiting dynamical prediction of lower 
tropospheric boreal summer intraseasonal oscillations. J. Geophys. Res. Atmospheres, 
115, D21127, doi:10.1029/2010JD013955. 

Eriksson, K., C. Johnson, and D. Estep, 2004: Lorenz and the Essence of Chaos. Applied 
Mathematics: Body and Soul: Calculus in Several Dimensions, K. Eriksson, C. Johnson, 
and D. Estep, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 849ς858 
http://dx.doi.org/10.1007/978-3-662-05800-8_5. 

Goswami, B. N., and R. S. A. Mohan, 2001: Intraseasonal Oscillations and Interannual Variability 
of the Indian Summer Monsoon. J. Clim., 14, 1180ς1198, doi:10.1175/1520-
0442(2001)014<1180:IOAIVO>2.0.CO;2. 

ττ, and P. K. Xavier, 2003: Potential predictability and extended range prediction of Indian 
summer monsoon breaks. Geophys. Res. Lett., 30, 1966, doi:10.1029/2003GL017810. 

ττ, R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by 
Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, 
doi:10.1029/2002GL016734. 

Jung, T., M. J. Miller, and T. N. Palmer, 2010: Diagnosing the Origin of Extended-Range Forecast 
Errors. Mon. Weather Rev., 138, 2434ς2446, doi:10.1175/2010MWR3255.1. 

Kirtman, B. P., and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Q. J. R. 
Meteorol. Soc., 126, 213ς239, doi:10.1002/qj.49712656211. 

Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal Variability of SST and 
Precipitation in the Arabian Sea during the Indian Summer Monsoon: Impact of Ocean 
Mixed Layer Depth. J. Clim., 29, 7889ς7910, doi:10.1175/JCLI-D-16-0238.1. 

Lin, H., G. Brunet, and J. Derome, 2008: Forecast Skill of the MaddenςJulian Oscillation in Two 
Canadian Atmospheric Models. Mon. Weather Rev., 136, 4130ς4149, 
doi:10.1175/2008MWR2459.1. 

Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmospheric Sci., 20, 130ς141, 
doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. 

ττ, 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321ς
333, doi:10.1111/j.2153-3490.1965.tb01424.x. 

Lorenz, E. N., 1993: The Essence of Chaos. University of Washington Press, Seattle, US,. 



21 
 

Macrae, N., 1999: John von Neumann: The Scientific Genius Who Pioneered the Modern 
Computer, Game Theory, Nuclear Deterrence, and Much More. American Math. Soc., 
US,. 

Magnusson, L., and E. Kallen, 2013: Factors Influencing Skill Improvements in the ECMWF 
Forecasting System. Mon. Weather Rev., 141, 3142ς3153, doi:10.1175/MWR-D-12-
00318.1. 

Mitra, A. K., A. K. Bohra, M. N. Rajeevan, and T. N. Krishnamurti, 2009: Daily Indian Precipitation 
Analysis Formed from a Merge of Rain-Gauge Data with the TRMM TMPA Satellite-
Derived Rainfall Estimates. J. Meteorol. Soc. Jpn. Ser II, 87A, 265ς279. 

Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: 
Multiscale Convective Organization and the YOTC Virtual Global Field Campaign. Bull. 
Am. Meteorol. Soc., 93, 1171ς1187, doi:10.1175/BAMS-D-11-00233.1. 

Moron, V., A. W. Robertson, and D. S. Pai, 2017: On the spatial coherence of sub-seasonal to 
seasonal Indian rainfall anomalies. Clim. Dyn., 1ς21, doi:10.1007/s00382-017-3520-5. 

Nanjundiah, R., P. A. Francis, M. Ved, and S. Gadgil, 2013: Predicting the extremes of Indian 
summer  monsoon rainfall with coupled oceanς atmosphere models. Curr Sci, 104, 1380. 

Neena, J. M., and B. N. Goswami, 2010: Extension of potential predictability of Indian summer 
monsoon dry and wet spells in recent decades. Q. J. R. Meteorol. Soc., 136, 583ς592, 
doi:10.1002/qj.595. 

Palmer, T., and D. Anderson, 1994: The Prospects for Seasonal Forecasting - a Review Paper. Q. 
J. R. Meteorol. Soc., 120, 755ς793, doi:10.1002/qj.49712051802. 

Palmer, T. N., 1993: Extended-Range Atmospheric Prediction and the Lorenz Model. Bull. Am. 
Meteorol. Soc., 74, 49ς65, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2. 

ττ, 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63, 71, 
doi:10.1088/0034-4885/63/2/201. 

ττΣ 2Φ .ǊŀƴƪƻǾƛŏΣ F. Molteni, and S. Tibaldi, 1990: Extended-range predictions with ecmwf 
models: Interannual variability in operational model integrations. Q. J. R. Meteorol. Soc., 
116, 799ς834, doi:10.1002/qj.49711649403. 

ττ, G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher, 2005: 
Representing Model Uncertainty in Weather and Climate Prediction. Annu. Rev. Earth 
Planet. Sci., 33, 163ς193, doi:10.1146/annurev.earth.33.092203.122552. 

Pokhrel, S., H. S. Chaudhari, S. K. Saha, A. Dhakate, R. K. Yadav, K. Salunke, S. Mahapatra, and S. 
A. Rao, 2012: ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system. 
Clim. Dyn., 39, 2143ς2165, doi:10.1007/s00382-012-1349-5. 



22 
 

Prasad, K. D., and S. V. Singh, 1996: Seasonal Variations of the Relationship Between Some Enso 
Parameters and Indian Rainfall. Int. J. Climatol., 16, 923ς933, doi:10.1002/(SICI)1097-
0088(199608)16:8<923::AID-JOC62>3.0.CO;2-5. 

Qi, Y., R. Zhang, T. Li, and M. Wen, 2008: Interactions between the summer mean monsoon and 
the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, 
L17704, doi:10.1029/2008GL034517. 

Reichler, T. J., and J. O. Roads, 2003: The role of boundary and initial conditions for dynamical 
seasonal predictability. Nonlin Process. Geophys, 10, 211ς232, doi:10.5194/npg-10-211-
2003. 

Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System Version 2. J. Clim., 27, 2185ς
2208, doi:10.1175/JCLI-D-12-00823.1. 

Sahai, A. K., and Coauthors, 2013: Simulation and Extended range prediction of Monsoon 
Intraseasonal Oscillations in NCEP CFS/GFS version 2 framework. Curr Sci, 104, 1394ς
1408. 

Sahai, A. K., R. Chattopadhyay, S. Joseph, R. Mandal, A. Dey, S. Abhilash, R. P. M. Krishna, and N. 
Borah, 2015: Real-time performance of a multi-model ensemble-based extended range 
forecast system in predicting the 2014 monsoon season based on NCEP-CFSv2. Curr Sci, 
109, 1802ς1813. 

Selvaraju, R., 2003: Impact of El Niñoςsouthern oscillation on Indian foodgrain production. Int. 
J. Climatol., 23, 187ς206, doi:10.1002/joc.869. 

Shukla, J., 1998: Predictability in the Midst of Chaos: A Scientific Basis for Climate Forecasting. 
Science, 282, 728ς731, doi:10.1126/science.282.5389.728. 

Suhas, E., J. Neena, and B. Goswami, 2012: An Indian monsoon intraseasonal oscillations (MISO) 
index for real time monitoring and forecast verification. Clim. Dyn., 1ς12, 
doi:10.1007/s00382-012-1462-5. 

Taraphdar, S., P. Mukhopadhyay, and B. N. Goswami, 2010: Predictability of Indian summer 
monsoon weather during active and break phases using a high resolution regional 
model. Geophys. Res. Lett., 37, L21812, doi:10.1029/2010GL044969. 

ττ, ττ, L. R. Leung, and K. Landu, 2016: Prediction skill of tropical synoptic scale transients 
from ECMWF and NCEP Ensemble Prediction Systems. Math. Clim. Weather Forecast., 2, 
doi:10.1515/mcwf-2016-0002. https://www.degruyter.com/view/j/mcwf.2016.2.issue-
1/mcwf-2016-0002/mcwf-2016-0002.xml (Accessed December 14, 2017). 

Toth, Z., and E. Kalnay, 1993: Ensemble Forecasting at NMC: The Generation of Perturbations. 
Bull. Am. Meteorol. Soc., 74, 2317ς2330, doi:10.1175/1520-
0477(1993)074<2317:EFANTG>2.0.CO;2. 



23 
 

Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Q. J. R. Meteorol. Soc., 
140, 1889ς1899, doi:10.1002/qj.2256. 

ττ, S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly Forecast of the 
MaddenςJulian Oscillation Using a Coupled GCM. Mon. Weather Rev., 135, 2700ς2715, 
doi:10.1175/MWR3415.1. 

Vitart, F., and Coauthors, 2016: The Subseasonal to Seasonal (S2S) Prediction Project Database. 
Bull. Am. Meteorol. Soc., 98, 163ς173, doi:10.1175/BAMS-D-16-0017.1. 

Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003a: Potential Predictability of the Maddenς
Julian Oscillation. Bull. Am. Meteorol. Soc., 84, 33ς50, doi:10.1175/BAMS-84-1-33. 

ττ, W. Stern, S. Schubert, and K. M. Lau, 2003b: Dynamic predictability of intraseasonal 
variability associated with the Asian summer monsoon. Q. J. R. Meteorol. Soc., 129, 
2897ς2925, doi:10.1256/qj.02.51. 

Webster, P. J., and C. Hoyos, 2004: Prediction of Monsoon Rainfall and River Discharge on 15ς
30-Day Time Scales. Bull. Am. Meteorol. Soc., 85, 1745ς1765, doi:10.1175/BAMS-85-11-
1745. 

Wheeler, M. C., and H. H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: 
Development of an Index for Monitoring and Prediction. Mon Wea Rev, 132, 1917ς
1932. 



24 
 

Figure Captions 

Figure 1: Comparison of correlation skills of CFS126 and CFS382 with ECMF forecast runs for the 

pentad 1 (P1) to pentad 4 (P4) lead time. Skill score is based on 11 members from each of ECMF ENS, 

CFST382 and CFST126 runs. 

Figure 2: Comparison of correlation skills of IITM MME and ECMF ENS for the 4 homogeneous 

regions of India. Skill score is based on 11 members from each of ECMF ENS and IITM MME. 

Figure 3: Brier Skill score for the monsoon zone for the above normal and below normal 

categories for the IITM MME and the ECMF ENS. Also shown the same for individual 

component models. Skill score is based on 11 members taken from each of the models. 

Figure 4: (a) The bivariate correlation and (b) the root mean square error (RMSE) and spread 

for the ECMF-MME, IITM-MME and individual component models.(c) The ratio of Bivariate 

RMSE and spread as a function of lead day. 

Figure 5: Monthwise variation in prediction skill for the ECMF and IITM runs. 

Figure 6: Figure 6: Subdivision wise skill for the June-September (JJAS) season. Left columns 

show the skill for ECMF ENS for P1τP4 pentad lead time (top to bottom). Right columns 

show the skill for IITM MME for P1τP4 pentad lead time (top to bottom). 

Figure 7: IMD Subdivision wise skill for the month of June for the IITM and ECMF forecast runs 

at each of the P1-P4 lead times. 

Figure 8: Same as figure 8 but for the month of July. 

Figure 9: Same as figure 8 but for the month of August. 

Figure 10: Same as figure 8 but for the month of September. 

Figure 11: subdivision wise spatial pattern of the days (shaded) in ECMF and IITM runs when 

the signal is equal to noise. 

Figure 12: (top) Deterministic skill scores  (cc and rmss) for the all of the IITM and ECMF 

combined (COMB), IITM MME and ECMF ENS forecasts and, (bottom) Brier skill score for the 

core monsoon zone of India (MZI). 
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Figure 1: Comparison of correlation skills of CFS126 and CFS382 with ECMF forecast runs for the 

pentad 1 (P1) to pentad 4 (P4) lead time. Skill is shown for the four homogeneous regions of India. 

Skill score is based on 11 members from each of ECMF ENS, CFST382 and CFST126 runs. 
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Figure 2: Comparison of correlation skills of IITM MME and ECMF ENS for the 4 homogeneous 

regions of India. Skill score is based on 11 members from each of ECMF ENS and IITM MME. 
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Figure 3: Brier Skill score for the monsoon zone for the above normal and below normal 

categories for the IITM MME and the ECMF ENS. Also shown the same for individual 

component models. Skill score is based on 11 members taken from each of the models. 
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Figure 4:  (a) The bivariate correlation and (b) the root mean square error (RMSE) and spread 

for the ECMF-MME, IITM-MME and individual component models.(c) The ratio of Bivariate 

RMSE and spread as a function of lead day.  
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Figure 5: Monthwise variation in prediction skill for the ECMF and IITM runs. 
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Figure 6: Subdivision wise skill for the June-September (JJAS) season. Left columns show the 

skill for IITM ENS for P1τP4 pentad lead time (top to bottom). Right columns show the skill 

for ECMF MME for P1τP4 pentad lead time (top to bottom) 
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Figure 7: IMD Subdivision  wise skill for the month of June for the IITM (left) and ECMF (right) 

forecast runs at each of the P1-P4 lead times. 
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Figure 8: Same as figure 7 but for the month of July. 
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Figure 9: Same as figure 8 but for the month of August. 
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Figure 10: Same as figure 8 but for the month of September. 


