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Abstract:

This study evaluates the performance of the Indian Institute of Tropical Meteorology (II'TM)
Decadal Climate Prediction System (IITM-DCPS), developed from the version 1 of [ITM Earth
System Model (ESMv1) for decadal climate prediction and to contribute towards the Decadal
Climate Prediction Project (DCPP). The model incorporates heterogeneous land surface
characteristics, including soil types derived from the STASGO/FAO dataset and vegetation
types from the USGS dataset, together with vegetation-based surface roughness
parameterizations. Land-atmosphere coupling is further improved through the integration of
the 2017 physics updates of the Global Forecast System (GFS), along with enhanced static
fields such as deep soil temperature, surface roughness length, orography, surface emissivity,
soil and vegetation type datasets, aerosols, greenhouse gas forcings, ozone, solar forcing, and
vegetation fraction. These enhancements collectively contribute to improved simulation
accuracy. As the model is aimed to provide accurate climate prediction in the annual to decadal
time scale, we first assessed its internal climate variability through a control simulation with
fixed forcings, focusing on its ability to capture the interannual to low-frequency climate
variability and its skill in simulating the South Asian monsoon system, including its global
teleconnections. The salient features of IITM-DCPS include less biases in mid-latitude
temperature compared to most of the global climate models, realistic representation of the
annual precipitation cycle over India especially in the core monsoon region. Realistic variances
in intraseasonal oscillations, simulation of monsoon wind fields, and tropospheric temperature
sensitivity to monsoon dynamics further highlight the model’s advancements. Additionally, the
model accurately captures the dominant climate modes, such as El Nino Southern Oscillation
(ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO),
across multiple timescales, along with stronger dynamical coupling with monsoon circulation.
These features collectively strengthen the predictive capabilities of IITM-DCPS and in
particular the South Asian monsoon and its teleconnections, positioning it as a robust tool for

decadal climate prediction.

Summary:

This study evaluates the performance of the Indian Institute of Tropical Meteorology Decadal
Climate Prediction System (IITM-DCPS) in simulating interannual to decadal variability of
the Indian Summer Monsoon (ISM) and its associated global teleconnections. Compared to its

predecessor, IITM-ESM, the IITM-DCPS demonstrates substantial improvements in



representing mean monsoon characteristics and large-scale climate variability. The model
significantly reduces mid-latitude temperature biases and improves the spatial distribution of
monsoon rainfall, intraseasonal oscillations, and tropospheric temperature gradients, all of
which are critical for realistic ISM dynamics. These improvements primarily arise from refined
surface-layer physics, updated vegetation and soil classifications, and enhanced horizontal
resolution. Together, these upgrades result in more realistic land—atmosphere feedbacks,
improved surface energy balance, near-surface temperature fields, and moisture transport
processes, leading to better simulation of precipitation and temperature variability.

The IITM-DCPS also shows enhanced skill in capturing major global climate modes such as
ENSO, PDO, AMO, and IPO, which modulate ISM variability across multiple timescales. In
particular, the model reproduces ENSO-ISM lead-lag relationships and simulates multi-
decadal teleconnections such as AMO-ISM and PDO-ISM linkages with reasonable fidelity,
including the ~65-year AMO periodicity. However, some systematic biases persist, including
the westward extension of ENSO-induced SST anomalies and discrepancies in tropical Indian
Ocean SSTs and associated teleconnection structures.

Overall, the IITM-DCPS represents a significant advancement for monsoon research and
decadal climate prediction while highlighting areas requiring further refinement, particularly
in aerosol—cloud interactions and land-surface processes. Its improved predictive capabilities
across multiple timescales make it a valuable tool for the development and implementation of

an advanced decadal climate prediction system.
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1. Introduction

Advancing climate science to address the multifaceted challenges of climate variability relies
on the continuous refinement of Earth system models (ESMs) to better capture the complexities
of the climate system (Guillemot, 2022; Alizadeh, 2022; CCSP, 2008; Hansen et al., 2005). As
our understanding of climate dynamics deepens, there is an increasing need to enhance the
predictive skill of modelling frameworks to represent intricate global and regional climate
processes accurately. A pivotal step in this effort is the development of the first version of
Indian Institute of Tropical Meteorology (IITM) decadal climate prediction system (IITM-
DCPSv1, hereafter ITM-DCPS), from the first version of the IITM Earth System Model
(IITM-ESMv1) (Swapna et al., 2015). IITM-DCPS is a radiatively balanced model, optimized
for climate studies, and shows improved simulation of global climate and regional monsoon
phenomena. It serves as the core component of India’s decadal climate prediction efforts and
is designed to meet the objectives of the DCPP within the Coupled Model Intercomparison
Project (CMIP6 and CMIP7) frameworks (Boer et al., 2016). Robust prediction of climate

variability on decadal timescales is its prime objective.

A critical factor for enhancing the decadal prediction capability is the adoption of higher
horizontal resolution in ESMs compared to their coarser-resolution counterparts. High-
resolution ESMs significantly improve the simulation of climate processes, particularly the
Atmospheric Cloud-Radiative Effect in regions like the Pacific and Atlantic cold tongue, where
shallow stratocumulus clouds dominate, due to better representation of longwave radiation and
reduced biases (e.g., Lin & Yu, 2022). In contrast, lower-resolution models often struggle to
accurately capture the regional climate features, such as extreme precipitation, orographic
effects, and vegetation influences (Ajibola & Afolayan, 2024). High-resolution models
demonstrate superior performance in simulating convective activity in warm regions (Wehner

et al., 2014) and precipitation patterns over areas like Europe, the United States, and Australia.

The benefits of enhanced model resolution extend beyond the atmospheric component to the
oceanic component of coupled models. Higher resolution enables more accurate representation
of features such as the Gulf Stream, reducing biases in regional dynamic sea level (Li et al.,
2022). This improves the simulation of tropical Pacific Sea Surface Temperature (SST) annual
cycle, as well as the onset and withdrawal timings of El Nifio (Arora, 2023). High-resolution
coupled models also better replicate Atlantic Meridional Overturning Circulation (AMOC)

pathways, aligning more closely with observations. They also capture variability, such as

1



chaotic-intrinsic variability from mesoscale ocean eddies or near-inertial waves, which cannot

be resolved by lower-resolution models.

Beyond model resolution, understanding and predicting specific climate phenomena is a central
goal of decadal prediction systems, with significant implications for regional climate.
Advancements in coupled ocean-atmosphere models and data-driven approaches highlight
significant progress in predicting tropical phenomena such as monsoons, the El Nifio Southern
Oscillation (ENSO), and the Indian Ocean Dipole (IOD), though challenges persist due to
internal climate variability, model biases, and initialization uncertainties. For ENSO, coupled
models demonstrate robust predictability beyond one year, with enhanced multi-year skill in
forecasting near-surface air temperature and precipitation following El Nifio or La Nifia events,
as linear reduced-gravity ocean models effectively capture thermocline depth variations in the
tropical Pacific (Rashid et al., 2020). Predictions of the IOD show emerging multi-year
capabilities, with decadal modulations in skill linked to southern hemisphere influences,
enabling forecasts beyond two years in advanced systems despite model diversity and biases
(Feba et al., 2021). Monsoon predictions, particularly for Asian and West African systems,
benefit from CMIP6 hindcasts, which improve accuracy in extreme rainfall frequency,
intensity, and spatiotemporal patterns through bias correction and machine learning, although
precipitation skill remains lower than temperature forecasts and sensitive to subseasonal
dynamics (Liu et al., 2023; Ling et al., 2022; Konda et al., 2023). Multi-model ensembles and
physical-statistical hybrids are increasingly critical for enhancing tropical predictability under
climate change (Smith et al., 2019). Over the past two decades, initiatives such as the CMIP
have played a pivotal role in shaping the landscape of climate research (Carvalho et al, 2022),
providing a standardised platform for model evaluation and facilitating multi-model analyses.
As CMIP continues to evolve, newer versions such as CMIP6 have ushered in a wealth of data,

crucial for understanding past climate trends and projecting future scenarios.

The practical value of decadal prediction lies in its ability to fill a critical gap in climate
information across timescales by bridging seasonal forecasts and long-term climate projections
(Meehl et al., 2009b), thereby providing skillful predictions that support sectors such as
agriculture, water management, and disaster risk reduction. Amidst the undeniable reality of
climate change, which now poses profound consequences, significant strides are being made
to enhance climate modelling capabilities, especially at decadal timescales. While long-term

climate projections offer valuable insights, there's a pressing need for actionable information



on shorter-moderate timescales as they predict climate variations over several years to a decade
(Bojovic et al., 2019), to support effective decision-making in vulnerable sectors. Unlike
seasonal forecasts, DCPS integrates observations with climate models (WCRP-Climate, 2023),
employing full-field initialization of ocean and atmospheric profiles, including SSTs, to capture
internal variability. These systems also incorporate external forcings such as greenhouse gases,
aerosols, ozone, solar forcing, and vegetation changes to enhance predictive skill. DCPS's
ability to forecast climate on decadal scales shows promise (Befort et al., 2020; Mahmood et

al., 2021), offering targeted insights for informed decisions towards a resilient future .

A key challenge in decadal climate prediction is distinguishing the externally forced climate
change signal from the system’s inherent internal variability (Meehl et al., 2009; Doblas-Reyes
et al., 2013). Beyond assessing predictive skill, decadal prediction also provides a framework
to address fundamental science questions, improving our understanding of climate processes,
variability across timescales, climate sensitivity, and model development (Meehl et al., 2009).
Climate variability arises from processes both external to the Earth's climate system and
internal to it, either independently or combination of both (Morales, 2022, IPCC, 2021). The
externally forced variations are caused by variations in solar forcing, and anthropogenic
changes in greenhouse gas concentrations and aerosol loadings (Meehl et al., 2014). However,
the intrinsic climate variability of the Earth system emerges from complex interactions among
its components (Deser et al., 2012). This natural variability drives regional-global climate
fluctuations across multiple timescales, including interannual (2—7 years), decadal (10-30
years), multidecadal (60—70 years), and centennial periods. Understanding the contributions of
this natural internal variability versus anthropogenic forcing is critical for decision-makers
across various sectors. They require clarity on whether observed climate events are transient
manifestations of natural variability, likely to reverse, or indicative of potentially irreversible
changes driven by human-induced climate change. The representation of natural variability
arising from the slowly-varying components of the climate system differs considerably among
models, so the inherent predictability of the climate system on the decadal time scale is also

not well established.

This study presents a comprehensive evaluation of the first version of IITM-DCPS, focusing
on a key aspect of its representation of internal climate variability-a major driver of regional
climate phenomena and a key source of uncertainty in decadal climate prediction. Our analysis

systematically assesses the model’s biases, variance, and spatial-temporal correlations against
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observations, with particular emphasis on the teleconnections of the Indian Summer Monsoon
Rainfall (ISMR). Through this detailed evaluation, we aim to clarify the potential predictability
of IITM-DCPS and contribute to the broader advancement of climate modelling and decadal

prediction capabilities.
2. Data and Methodology
2.1 Validation Datasets

The performance of ITM-DCPS was evaluated against multiple observational and reanalysis
datasets spanning key climate variables such as temperature, precipitation, and SST, which
were further used to calculate climate and circulation indices over global as well as regional
domains. 2m (surface) temperature climatology and atmospheric circulation indices were
validated against ERAS reanalysis (Hersbach et al., 2020), while acknowledging its higher
uncertainty during the pre-satellite era due to sparse observations. Global precipitation
climatology was assessed using the Global Precipitation Climatology Project (GPCP) version
2 dataset (Adler et al., 2003), and regional precipitation over India was validated against the
high-resolution gridded rainfall dataset from the India Meteorological Department (IMD; Pai
et al., 2014; Rajeevan et al., 2006), with recognition of uncertainties related to gauge density
and under catch, particularly in earlier periods (Sun et al., 2018). SST climatology and all
dominant climate modes including ENSO, AMO, and Interdecadal Pacific Oscillation (IPO)
were evaluated using the Centennial in situ Observation-Based Estimates (COBE) SST version
2 dataset (Hirahara et al., 2014), with consideration of uncertainties from historical
measurement practices and sparse coverage in the pre-satellite era (Kennedy, 2014). While
these reference datasets provide robust benchmarks, they are not free from uncertainties, which
arise from sparse observational coverage, retrieval and measurement errors, and biases in
observational practices or reanalysis methods; these issues are particularly pronounced in the
pre-satellite era, when reconstructions relied more heavily on indirect observations or model-
based estimates (Merchant et al., 2017; Dell’ Aquila et al., 2005). However, it should be noted
that for low-frequency climate variability modes such as the AMO or PDO, the impact of data
sparsity is relatively less important, since their spatial structures extend over large regions and
can often be captured even with limited observational sampling (Trenberth and Shea, 2006)
All datasets, along with model outputs, were regridded to a common 1° % 1° grid using bilinear

interpolation to ensure consistent spatial comparison.



2.2 Overview of the IITM-DCPS

In pursuit of advancing climate modelling capabilities, we have developed the IITM-DCPS by
transforming the IITM-ESM. The IITM-DCPS incorporates refined parameterizations,
improved model initialization techniques (3D-variational Grid point Statistical Interpolation
on Global Forecast System (GFS) and systematic nudging the temperature profiles towards
Ocean Reanalysis System 5 (ORASS5) on MOM4p1), and key updates to the surface layer
physics mostly adopted from the 2017 GFS update, along with modifications in the land surface
model. Collectively, these changes have improved the model's performance, evidenced by
accurate simulation of decadal climate variability, significantly less temperature biases and
initial drift which are issues common in many climate models (Sanchez et al., 2016; Pasternack

et al., 2021). The following details the notable changes implemented in the ITM-DCPS.

The atmospheric component of the ITM-DCPS (Figure 1) is the NCEP GFS model, configured
with a spectral triangular truncation of 126 waves (T126), corresponding to an approximately
1° horizontal grid, and 64 sigma-pressure hybrid layers extending to a model top at 0.2 hPa. It
employs the simplified Arakawa—Schubert convection scheme, incorporating cumulus
momentum mixing to enhance the representation of atmospheric dynamics. The ocean
component utilizes the Modular Ocean Model version 4pl (MOM4pl), with a horizontal
resolution of 0.5° zonally and 0.25° meridionally, coarsening poleward of 30°S and 30°N. It
includes 40 vertical levels, with 27 concentrated in the upper 400 m, and applies the K-Profile
Parameterization (KPP) scheme (Large et al., 1994) for vertical diffusivity, viscosity, and non-
local transport, as detailed in Griffies et al. (2009). The sea ice component is the Sea Ice
Simulator version 1 (SIS), a coupled model described by Delworth et al. (2006), which
represents sea ice as a three-layer system with five-layer thickness categories. Interactive
biogeochemistry is integrated via the Tracers of Phytoplankton with Allometric Zooplankton
(TOPAZ) module within a generic ocean turbulence framework, enabling comprehensive
simulation of ocean and sea-ice dynamics, thermodynamics, and local tracer variations driven

by physical and biogeochemical interactions.

Further, IITM-DCPS uses the Noah land surface model (LSM) version 2.7.1, which includes a
single-layer snowpack, vegetation, and 4 underlying soil layers. Studies by Saha et al. (2017)
have identified biases in snow-covered midlatitude regions that may affect the accuracy of
coupled forecasting systems using Noah. To address these limitations while retaining Noah

2.7.1, we modified the surface layer, including momentum and heat transfer exchange



constraints adopted from the NCEP-GFS model as a part of their 2017 update (Zheng et al.,
2017) and the adoption of STATSGO-19 soil and USGS-24 vegetation classifications to
improve land surface processes. Additionally, the model integrates MODIS snow-free albedo
fields, incorporating both direct and diffused sea surface albedo, as well as direct MODIS
maximum snow albedo in surface albedo schemes. Further modifications include vegetation-
based surface roughness parameterizations, tuned Zilitinkevich coefficient (czil) for optimized
aerodynamic resistance in land-atmosphere coupling, and high-resolution land surface
boundary datasets. Collectively, these changes enhance the model’s ability to mitigate near-
surface temperature biases over midlatitude land regions, cold biases in snow-covered areas
and warm biases in the Southern Ocean, which are common in most of the climate models, as

shown in section 3.

2.3 Description of Control Simulation

The 220 years long control simulation was done with atmospheric trace gas concentrations,
anthropogenic aerosols, insolation, and land cover remaining constant at 2005 levels, without
interannual variations using the IITM-DCPS. This fixed-forcing experimental design is
essential to isolate the model's internal climate variability from externally forced changes. To
achieve a quasi-equilibrium state in the beginning, we performed a 30-year spin-up integration
in fully coupled mode, initializing the model from a randomized present-day ocean-atmosphere
state. The subsequent control simulation establishes a baseline for examining the internal
variability of the climate system within the IITM-DCPS framework. The extended period of
more than 200 years of simulation enables the characterization of intrinsic variability across
multi-decadal to centennial timescales. By maintaining fixed greenhouse gas concentrations,
the IITM-DCPS control simulation offers a stable framework to evaluate internal climate

variability and the model’s response under quasi-equilibrium conditions.

This study utilizes CMIP6 pre-industrial control (piControl) simulations as a benchmark to
assess the IITM-DCPS model's spatial bias patterns and intrinsic variability. It is important to
note that the [ITM-DCPS simulations use fixed present-day (2005) forcings and so is not a pre-
industrial climate simulations. Therefore, this comparison is explicitly not an evaluation of the
forced climate response or absolute climatological values. The analysis is designed to isolate
basic broader model structural biases and internal variability characteristics, which are
considered less dependent on the background forcing state, making the piControl a valid and

community-standard reference for these specific diagnostics.



3. Results

3.1 Analysis of Model Equilibrium

The control simulation of the [ITM-DCPS under fixed 2005 greenhouse gas concentrations
demonstrates that the model attains a quasi-equilibrium climate state in 200 years of integration
(Figure 2a-d). The model exhibits minimal long-term drift, with SST (Figure 2a) stabilizing at
approximately 17.9°C showing negligible trend and surface air temperature (TAS) (Figure 2b)
maintaining a mean of =14.05°C with negligible trend. These equilibrium values are
comparable to observational estimates for the 2005 period global mean SST of ~16.8-17.2 °C
(Rayner et al., 2003) and global mean surface temperature of 14.5-14.7 °C (Morice et al., 2012),
though the model remains slightly warmer, consistent with the known warm biases in coupled
models, particularly those arising from misrepresentation of Southern Ocean cloud-radiation
feedback. The top-of-atmosphere (TOA) (Figure 2¢) net radiative flux shows a mean imbalance
of +2.02 W/m?, which gradually diminishes at a rate of -0.0008 W/m?/yr. While this exceeds
contemporary observational estimates of Earth's energy imbalance (~+0.5 to +1.0 W/m?;
Trenberth et al. 2014), the primary requirement for decadal prediction applications is model
stability rather than exact radiative equilibrium, as short-term prediction skill (up to 10 years)
is determined more by initial conditions and internal variability than by centennial-scale energy
balance adjustments. The decomposition of the TOA flux budget (Figure 2d) reveals that this
small net imbalance results from stable, offsetting components. The stability of SST, a critical
indicator of ocean-atmosphere energy balance combined with negligible atmospheric
temperature drift, ensures that the IITM-DCPS does not suffer from substantial climate drift
during the forecast periods. Any residual drift is extremely small and well within acceptable
limits for CMIP6-class control runs, giving confidence that the variability analyzed in our study
predominantly reflects the model’s internal climate variability rather than artifacts from model

drift.

3.2 Global mean surface fields

Global mean temperature is a key metric for evaluating model performance in simulating
climate change and its impacts (Hausfather et al., 2020; Beusch et al., 2020). To understand the
baseline state of the global models, we first analyzed the JJAS mean climatological biases of
2m temperature, precipitation and SST of ITM-DCPS along with piControl runs of 12 CMIP6
models that participated in DCPP, with respect to the observed climatology (Figure 3).

Focusing on JJAS biases highlights peak monsoon dynamics and the strongest land-sea thermal



contrast, revealing systematic model deficiencies often obscured in annual mean diagnostics..
Observational reference climatologies for temperature (NCEP-v3) and SST (ERSST-v3) use
the pre-industrial baseline period 1850-1900 for the DCPP models, while IITM-DCPS biases
are evaluated against the present-day climatological mean from 1981-2010, to ensure
appropriate comparison periods, while acknowledging that precipitation observations (GPCP)
are only available from 1979 onward. Our analysis revealed a persistent positive bias over the
Southern Ocean in most models (Figure 3al-m1), a feature widely attributed to deficiencies in
simulating shallow convective clouds and shortwave radiation feedback, which lead to
Southern Ocean warming (e.g Kay et al., 2016; Swapna et al., 2018). Improvements to ice
microphysics schemes have been proposed to mitigate this bias by enhancing Southern Ocean
cloud albedo (Varma et al., 2020), while recent studies suggest that warm biases in the North
Atlantic deep ocean, driven by adiabatic AMOC processes, may also contribute to such global

temperature bias (Luo et al., 2023).

A pronounced warm SST bias (Figure 3a3-m3) over the Southern Ocean evident in models
such as CMCC-CM2-SRS5, EC-Earth3, EC-Earth3-CC, FGOALS-f3-L, MIROC6, MPI-ESM1-
2-HR/LR, MRI-ESM2-0, and IITM-DCPS may be attributed to the underestimation of
supercooled liquid cloud cover and excessive shortwave absorption (Bodas-Salcedo et al.,
2014; Hyder et al., 2018). This bias weakens the meridional temperature gradient and induces
warm TAS biases across the Southern Hemisphere mid-latitudes. In contrast, cold high-latitude
land biases over Eurasia and North America appear in BCC-CSM2-MR, EC-Earth3 variants,
FGOALS-f3-L and MRI-ESM2-0, possibly linked to excessive snow cover, high surface
albedo, and insufficient turbulent mixing under stable boundary-layer conditions (Holtslag et
al., 2013; Niu et al., 2011). Several models including FGOALS-{3-L, IITM-DCPS, MIROCS6,
MPI-ESM1-2-LR/HR, and NorCPM1 exhibit pronounced midlatitude North and South Pacific
cold SST biases, consistent with earlier studies linking these biases to excessive surface heat
loss, storm-track wind biases, and cloud—radiation errors that reduce shortwave absorption (e.g
Hyder et al., 2018; IPCC, 2021). Precipitation biases (Figure 3a2-m2) across the CMIP6
models further reveal structural deficiencies, with nearly all models displaying excessive
rainfall over the Maritime Continent and the equatorial warm pool, along with dry biases over
the Indian monsoon region particularly in CanESMS5, EC-Earth3 variants, FGOALS-f3-L,
HadGEM3-GC31-MM, and MRI-ESM2-0. These patterns reflect persistent challenges in
simulating convection-orography interactions and monsoon-ITCZ coupling (Schiemann et al.,

2014; Hwang et al., 2021). In addition, many models exhibit an exaggerated wet bias over the



western Pacific warm pool, associated with an unrealistically warm and expanded Indo-Pacific
Warm Pool that could strengthen local ascent and shifts the Walker circulation’s ascending
branch eastward, thereby intensifying precipitation over the Maritime Continent and adjacent

equatorial regions (Li & Xie, 2014; IPCC AR6, 2021)

Comparing with the other ESMs, IITM-DCPS exhibits relatively reduced JJAS rainfall biases
over central and northwest India, realistic representation of the Bay of Bengal rainfall
maximum, and a more realistic land-sea thermal contrast that develops the monsoon trough.
The model also better captures key Indian Ocean features, including reduced warm SST biases
in the Arabian Sea and a more realistic east-west gradient across the equatorial Indian Ocean,
which together lead to improved moisture transport and monsoon circulation relative to most
DCPP models. Further, the Southern Ocean warm bias in the DCPS is significantly low
compared to the bias prevalent in EC-Earth and MPI model families, and the representation of
the tropical SST structure particularly reducing the cold bias and producing a more realistic
monsoon rainfall distribution compared to most of the DCPP models. These improvements can
be attributed to a combination of targeted physics advances, including enhanced boundary-
layer turbulence formulations, updated soil-vegetation and snow parameterizations, improved
air—sea flux coupling (Zheng et al., 2012; 2017), as well as the improved model resolution. The
systematic biases across CMIP6 piControl models highlight structural limitations in cloud-
radiation interactions, ocean-atmosphere coupling, and monsoon ITCZ dynamics. The reduced
biases and improved mean state in [ITM-DCPS could provide a suitable baseline for initialized
decadal prediction and support a more consistent representation of Indo-Pacific climate

processes.
3.3 Improvements in mean Indian Monsoon Simulation

To assess the performance of ESMs in simulating the Indian monsoon, we analyzed the pattern
correlation of various ESMs participated in DCPP with the observed (GPCP) monsoon spatial
distributions (climatological) over the extended South Asian monsoon domain (40°E-120°E,
10°S-40°N) (Figure 4) and also the seasonal rainfall cycle (Figure 5) over the core monsoon
domain using piControl simulations from 12 climate models that participate in CMIP6 and are
included in the DCPP framework, together with the IITM-DCPS. The models shown in green
represent the CMIP6 piControl runs, while the IITM-DCPS control run, shown in maroon, is
performed with fixed 2005 GHG concentrations. This comparison between CMIP6 pi-control
and IITM-DCPS control run with fixed GHG concentrations at 2005 remains valid for
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evaluating mean rainfall spatial patterns, as the climatological mean of monsoon rainfall is
largely governed by internal variability and physical parameterizations, while the relatively
small forced trends over the historical period have a negligible impact on the long-term average
spatial distribution. Figure 4 shows the skill of IITM-DCPS in simulating mean monsoon
climatology, providing a comparative perspective against other DCPP models. Notably, out of
the 13 models examined, IITM-DCPS occupies the 3rd position in the descending order of
pattern correlation (0.87), indicating a high level of agreement with observed climatological
spatial distributions. This represents how well the models capture the wet-dry contrasting
pattern over the South Asian monsoon domain, characterized by wet regions in the east and
semi-arid regions to the west, as well as the oceanic rainfall features. This pattern analysis

provides insights into the models' ability to reproduce the monsoonal climatic feature.

Accurate simulation of the Indian monsoon’s annual rainfall cycle is essential for applications
such as agricultural planning and water resource management by understanding regional
climate dynamics. The analysis of annual rainfall cycle (Figure 5) reveals significant variability
among models in representing the seasonal distribution of rainfall. Approximately half of the
models accurately capture a precipitation peak in July, consistent with observations, while the
other half exhibit a delayed peak in August, a common deficiency linked to the excessive
persistence of deep convection over the equatorial Indian Ocean, warm SST biases in the
eastern Indian Ocean and Bay of Bengal, and a delayed northward migration of the ITCZ (e.g.
Sabeerali et al., 2013; Goswami et al., 2019). These biases weaken the early season cross-
equatorial moisture transport, suppress June convection, and enhance rainfall later in the
season, manifesting as an artificial August intensification. Such errors have been associated
with the misrepresentation of monsoon intraseasonal oscillations (MISOs), which govern the
northward propagation of convective bands from the equatorial Indian Ocean into the Indian
subcontinent (Jiang et al., 2004; Ajayamohan and Goswami, 2007). Another widespread feature
across the CMIP6 models is the significant June dry bias, reflecting difficulties in simulating
monsoon onset processes, including land-sea thermal contrast development, low-level jet
strengthening, and upper-ocean preconditioning. However, the IITM-DCPS provides a realistic
representation of the seasonal evolution, showing the smallest June bias among all models.
Even the best-performing models from the DCPP (Figure5, EC-Earth3:maroon colour; EC-
Earth3-CC:blue dashed line) exhibit moderate June dry bias, whereas the ITM-DCPS captures
the onset characteristics more accurately. The suppression of the excessive August rainfall peak

in IITM-DCPS is also well comparable with the best DCPP models, indicating improved
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simulation of ocean-atmosphere coupling, boundary-layer processes, and intraseasonal
variability. These improvements reflect the targeted physics upgrades implemented in DCPS,
strengthening its ability to capture both the timing and intensity of monsoon rainfall, which is
essential for decadal prediction. Nevertheless, ITM-DCPS continues to exhibit a moderate dry
bias during the peak monsoon months of JAS. This deficiency is likely linked to the use of
simplified microphysics and convection parameterizations with limited hydrometeors which
can constrain the intensity and organization of deep convective rainfall and its progression,
which is beyond the scope of the present model configuration. It is noteworthy that best
performing DCPP models, especially the EC-Earth family, perform well in simulating the mean
spatial pattern of monsoon rainfall, also underestimate the rainfall seasonal cycle, underscoring
the persistent challenges of simultaneously capturing both spatial climatology and seasonal

evolution of the Indian summer monsoon in current-generation climate models.
3.4 Monsoon Indices

The Indian monsoon manifests the dynamic interplay of precipitation and winds, shaping a
complex atmosphere-ocean coupled system. Resembling an expansive land and sea breeze
analogy, it is driven by the divergent seasonal heating and cooling patterns of continental and
oceanic regions. This system encompasses low-level cyclonic vorticity, low level westerly jets,
and upper-level anticyclones, forming a deep overturning circulation cell. The dynamics of the
monsoon and its interaction with wind patterns are complex processes that manifest in the
seasonal reversal of prevailing winds and a pronounced annual precipitation cycle (Goswami
& Chakravorty, 2017). This phenomenon is primarily driven by the seasonal fluctuation in
land-ocean thermal contrast, influenced by the annual variation of the solar cycle and
hemispheric asymmetric SST gradients (Li & Pc., 2018). Moreover, the monsoonal flow can
extend into mid-latitudes due to the thermal effects of the elevated Tibetan Plateau. The vertical
coupling of upper and lower-level circulations over South Asia is modulated by various
external drivers such as the ENSO, impacting the onset and progress of the monsoon (Liu et
al., 2015). Consequently, comprehending the complexities of monsoonal dynamics and their
interplay with wind fields is imperative for accurately predicting monsoon variability and its

associated impacts.

To understand the monsoon dynamics and its “coupling” with the wind fields within our
modelling framework, we verify various existing circulation indices that have been proposed

in the literature (Webster and Yang, 1992; Goswami et al., 1999; Wang and Fan, 1999; Wilson
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and Mohanakumar, 2020) with conventional rainfall-based Monsoon indices. Figure 6
represents the time series of simulated Indian Summer Monsoon Rainfall (ISMR) and seasonal
mean circulation indices normalised by their own interannual standard deviation for the period
of 200 years. The winds used in all circulation indices and rainfall (All India) are averaged over
June-September (JJAS) but area-averaged over different regions based on those indices. The
pioneering monsoon circulation index, termed Webster Yang Index (WYI) introduced by
Webster and Yang (1992), was the first of its kind. It measures the vertical shear of the zonal
wind, averaging the mean temporal zonal wind shear between 850 hPa (U850) and 200 hPa
(U200). This calculation spans from the Equator to 20°N and covers longitudes 40° to 110°E
(Webster and Yang, 1992).

The Monsoon Hadley-circulation Index (MHI) was suggested by Goswami et al. (1999), based
on the idea that the regional Hadley circulation arises from the direct influence of the off-
equatorial monsoon heat source. This index is determined by the anomaly in meridional wind
shear between pressure levels 850 and 200 hPa (V850 -V200), averaged across the area from
70°E-110°E and 10°N-30°N. Wang and Fan (1999) developed another circulation index for the
monsoon, known as the Monsoon Circulation Index (MCI), in relation to Convection Index 1
(CI). CII is defined by negative outgoing long-wave radiation (OLR) anomalies averaged
over the Bay of Bengal (BOB) region (10°-25°N, 70°-100°E), emphasizing the crucial role of
convective latent-heat release in driving summer monsoons. The MCI, recommended for the
Indian monsoon, is calculated from the difference between U850 and U200 averaged over the
area 5°-20°N, 40°-80°E. A new circulation index, the SMI index, was recently proposed by
Wilson and Mohanakumar (2020). This index is a modified version of the MCI index,
excluding land regions to minimize topographical effects on zonal wind patterns. It is
calculated from the vertical shear of zonal winds between the jet cores of the Low-Level
Westerly Jet (ULLJ core) and Tropical Easterly Jet (UTEJ core) over the oceanic area 5°-
20°N, 50°-70°E. A revised index for the ISM based on the difference in 850 hPa zonal winds
between a southern area of 5°S-5°N and 40°-80°E, and a northern area of 20°-30°N and 70°-
90°E (HWSI) is developed by Prasad and Hayashi (2007).

The temporal correlations between the circulation indices and ISMR, using normalized time
series (JJAS), are calculated for the time period of 200 years and presented in Figure 6. It is
noted that the circulation indices correlate strongly with ISMR, with the highest correlation

coefficient (CC) found for HWSI (0.83), significant at the 99.9% level, followed by SMI (0.73),
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and MCI (0.70). The other indices, MHI and WY1, also show significant correlations of 0.68
and 0.56 respectively. The correlation of 0.50 between any index and ISMR suggests that it
explains about 25% of the variance of ISMR. The stronger correlations in IITM-DCPS suggest
that the model captures the dominant dynamical coupling between large-scale monsoon

circulation and rainfall.

Recognizing the crucial influence of the tropospheric temperature gradient (TTG) on ISMR,
TTG index (Figure 7) has been calculated by averaging column air temperature from 600 to
200 hPa and taking their difference between the Indian monsoon domain (60-100°E, 20-30°N)
and the equatorial region (60-100°E, 5°S-5°N) to quantify its significance, reflecting its role in
determining monsoon onset, withdrawal, intensity, regional rainfall distribution, and broader
atmospheric dynamics. The onset and withdrawal of the South Asian Monsoon are defined by
the TTG shifting from negative to positive and vice versa, driven by adiabatic heating over
Asia and Tibetan Plateau warming, with peak positive TTG in July-August due to diabatic
cloud heating strengthening monsoon circulation (He et al., 1987; Yanai et al., 1992). Figure 7
reveals a significant correlation (0.52) between the TTG index and ISMR, highlighting the
thermodynamic coupling where a strong TTG enhances monsoon circulation through increased
moisture convergence and convection, influencing onset timing, rainfall intensity, and regional
distribution (Goswami and Xavier, 2005, Xavier et al., 2007). The IITM-DCPS captures the
interannual variability of ISMR, with monsoon onset and withdrawal in early June and late

September precisely coinciding with the observed TTG gradient reversal.
3.5 Column Integrated Moist Static Energy

Moist Static Energy (MSE) is a crucial parameter in atmospheric thermodynamics that captures
the temperature and moisture content of an air parcel and gives information about its potential
for energy release and convective activity. The MSE is a measure of total energy that is
approximately conserved for hydrostatic, moist adiabatic vertical motions (Adames Corraliza

and Mayta, 2023).

MSE= CpT+gz+LvQ (1)

where Cp is the specific heat of dry air at constant pressure, T is the temperature, z is the
geopotential, g is acceleration due to gravity, Lv is the latent heat of vaporization and Q is the

specific humidity.
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Monsoon dynamics hinge on the interplay of precipitation, wind patterns, and atmospheric
processes, requiring accurate modelling to capture ISM variability. Studies by Wang et al.
(2014) and Biasutti et al. (2018) highlight how solar insolation-driven variations in MSE
influence seasonal atmospheric circulation and precipitation, with the Himalayan mountains
further shaping MSE distribution and modulating monsoon onset and intensity (Boos & Kuang,
2010). Therefore, analyzing the simulated distribution of Vertically Integrated MSE (VIMSE)
is critical for refining thermodynamic processes, enhancing the model’s prediction of ISM

rainfall.

Figure 8 illustrates the comparison of the spatial regression patterns of VIMSE (Jm™2) over the
1000-300 hPa column against ISMR (mm) during the JJAS season between the ITM-DCPS
and observation. The IITM-DCPS reasonably captures the spatial distribution of VIMSE,
showing increased values over the northern Indian Ocean and western India, consistent with
observed patterns, which reflect greater moisture availability and convective activity driving
monsoon rainfall. Minor differences, such as slightly weaker VIMSE gradients over the Bay of
Bengal in the model, may indicate a possible underestimation of moisture convergence, yet the
overall similarity highlights the model’s improved depiction of thermodynamic coupling
between VIMSE and ISMR, supporting enhanced monsoon circulation as noted in the TTG
analysis (Figure 7). Higher VIMSE values correlate with increased ISMR, increasing
convective activity and rainfall through enhanced atmospheric moisture availability. This is
consistent with the moisture convergence mechanism where moisture-laden air masses

converge over the Indian subcontinent to drive convective cloud formation and precipitation.

3.6 Spatial distribution of monsoon intraseasonal Variability

The South Asian summer monsoon rainfall exhibits temporal variability, marked by alternating
periods of active and break rainfall (Krishnamurti and Bhalme, 1976; Chen and Chen, 1993;
Annamalai and Slingo, 2001; Chatterjee and Goswami, 2004), referred to as the monsoon
intraseasonal oscillation (MISO). The MISO accounts for 60% of the ISM variability
(Goswami, 2005), plays a pivotal role in modulating the mean monsoon rainfall anomalies and
determines whether a particular year experiences excess or deficit conditions. This variability
is linked to two distinct atmospheric modes. The first mode, which has a cycle of 10-20 days,
moves westward (Krishnamurti and Bhalme, 1976, Chen and Chen, 1993, Annamalai and
Slingo, 2001, Chatterjee and Goswami, 2004), while the second mode, with a cycle of 30-60
days, moves northward (Yasunari, 1979, Sikka and Gadgil, 1980, Annamalai and Sperber,
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2005, Goswami, 2005). Active rainfall periods bring above-average precipitation, benefiting
agriculture and replenishing water reservoirs, but can also lead to floods. Conversely, break
rainfall periods result in below-average precipitation, causing droughts that can negatively
impact agriculture, water resources, and livelihoods. Thus, the MISO-induced variability in
monsoon rainfall can lead to contrasting scenarios of excess or drought years, affecting regional

water availability, agricultural productivity, and socio-economic well-being.

In this section we compare the simulation of ISOs by the IITM-DCPS with respect to the
observation (Figure 9) by examining the model's ability in representing ISO characteristics
over the South Asian region. Spatial patterns of ISO variance reveal prominent activity over
the equatorial Indian Ocean, with maxima centered between 5°S—10°N and 60°E-90°E. The
30-60 day band, associated with the Madden—Julian Oscillation (MJO), exhibits substantially
higher variance (exceeding 30-40 (mm/day)?) compared to the 10-20 day band (typically 20-
25 (mm/day)?). These results highlight the dominance of the MJO in modulating monsoon
intraseasonal variability. The enhanced variance near 5°S suggests a convective source region
influenced by the Intertropical Convergence Zone (ITCZ) and higher SSTs. Furthermore, the
observed northward propagation toward the Indian subcontinent and eastward extension
toward the Maritime Continent (90°E—120°E) closely follow established ISO pathways. The
IITM-DCPS simulation yields correlation coefficients of r = 0.81 and r = 0.83 for the 10-20
day and 30-60 day ISOs, respectively, indicating realistic skill in simulating ISO patterns. The
I[ITM-DCPS not only captures the broader eastward extension of ISO variance but also presents
smoother spatial gradients, particularly in the 30-60 day band. These results can be attributed
to the improved land-atmosphere coupling in reproducing key features of monsoon

intraseasonal variability within the decadal prediction system.

3.7 Analysis of Climate Modes of Variability in CMIP6 pi-control runs

CMIP6 pi-control simulations provide a critical framework for isolating the internal variability
of the climate system by maintaining fixed atmospheric greenhouse gas concentrations,
aerosols, and other external forcings at pre-industrial levels, thus eliminating time-varying
anthropogenic influences (Eyring et al., 2016). These simulations enable a detailed
examination of intrinsic climate variability of how the ESMs simulate the dominant modes of
climate variability such as ENSO, AMO, and PDO. Understanding these modes can help for
distinguishing natural climate variability from anthropogenic signals, a key objective of DCPP

(Boer et al., 2016).
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Our analysis of CMIP6 piControl runs focuses on the decomposition of climate indices to its
various modes of variability to evaluate the representation of ENSO, AMO, and PDO, which
drive variability across interannual to multidecadal timescales. ENSO, characterized by SST
anomalies in the tropical Pacific, is a primary driver of global climate variability, influencing
the ISM through teleconnections (e.g. Ashok et al., 2001). However, CMIP6 models often
exhibit biases in ENSO amplitude and periodicity (Planton et al., 2021). The AMO, marked by
North Atlantic SST fluctuations, impacts mid-latitude and monsoon dynamics, but models
frequently struggle to capture its multidecadal periodicity (Zhang et al., 2019). Similarly, the
PDO, defined by north Pacific SST patterns, affects regional climate but is often
underrepresented in low-resolution models (Newman et al., 2016). In our analysis, we assess
the dominant climate modes by decomposing the variance of these key indices across distinct
frequency bands. Following this, we evaluate the dominant periodicities driving their
variability and assess the fidelity of CMIP6 model simulations, including the IITM-DCPS, in

reproducing these patterns.

The variance of each mode is quantified as a percentage of the total variance in the raw signal,
with spectral bands categorized by periodicity: the 2-5 year band (interannual (including quasi-
biennial variability)), 5-10 year band (near-decadal variability), 10-20 year and 20-40 year
bands (decadal), and 40-80 year band (multi-decadal). Figure 10 displays a heat map of
variance explained by various frequency bands of climate indices with each cell representing
the percentage contribution of the band and model, colour intensity indicating magnitude. This
facilitates a comparative evaluation of frequency-dependent variability, using observed spectra
in the bottom row as a benchmark for assessing IITM-DCPS performance against other models.
Discrepancies between simulated and observed variances identify refinement areas, for the

reliability of decadal climate predictions.

The observed percentage of variance of both the ISMR and El Nifio show stronger biennial and
intra-decadal modes of variability compared to their decadal to multi-decadal counterparts in
the original signal over a period of 200 years (Figure 9). The variance of both the interannual-
intradecadal modes of ENSO and monsoon is strong and satisfactorily reproduced by all the
models as seen in the observations highlighting ENSO as the primary driver of Indian monsoon
variability, and with two-way feedback (Goswami et al, 2022) between them at interannual
timescales. All the models simulate these modes well, with most of them capturing the

associated teleconnections on interannual timescales. Whereas the multidecadal modes of
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ENSO are comparatively weak, suggesting its insignificant contribution to the multidecadal

variability of the monsoon.

However, the representation of low frequency modes such as PDO and AMO in models varies
significantly, some models underestimate the observed variances in their decadal and multi-
decadal modes though they represent the variance in interannual-intradecadal modes. Thus,

capturing the observed variances of PDO and AMO in models still remains a challenge.

BCC-CSM2-MR captures the observed dominant periodicities of ISMR in the 0—20-year and
50-80-year bands reasonably well, whereas CanESMS5 shows notable deviations from these
spectral characteristics. Nino3.4 (ENSO) periodicities are well captured in the 2-5 year band
by MPI-ESM1-2HR, though MIROC6 deviates towards the 10-20 year band. The observed
periodicity of AMO in the 50-80 year band is well represented by some models (e.g. BCC-
CSM2-MR), while some models (e.g. FGOALS-f3) show significant variance in the 20-40 year
band. Most models captured the 50-80 year band of PDO effectively, though models like
MIROCG6 show stronger variance in the 10-20 and 20-40 year bands. Overall, the heatmap
reveals that while many models capture the dominant periodicities of climate indices well, there
are notable discrepancies, particularly in simulating AMO and PDO, highlighting the need for

continuous refinement of climate models.

Based on the evaluation across multiple modes (ISMR, Nifio3.4, AMO, and PDO) and
frequency bands (2-5, 5-10, 10-20, 20-40, 50-80 days), FGOALS-f3 shows better skill among
all the models, by capturing the observed variance across various modes and temporal scales.
HadGEM3_ GC31 also shows high skill, particularly for ISMR and PDO. MIROC6 and MPI-
ESM1-2HR show relatively better skills in representing Nifio3.4 and PDO features. The IITM-
DCPS demonstrated good overall skill, with particularly strong performance in the lower-
frequency bands and reasonable agreement with observations across the modes. These results
suggest that IITM-DCPS is able to represent several key aspects of climate variability. The
analysis further indicates that the model can be applied to studies of monsoon variability,

climate teleconnections, and decadal prediction.
3.8 ENSO-monsoon teleconnection at interannual timescales

Earlier studies have demonstrated that on seasonal time scales, the ENSO plays a crucial role
in enhancing the skill of precipitation prediction over the tropics (Shukla and Paolino 1983;

Wang et al. 2018; Sohn et al. 2019; Dunstone et al. 2020). The ENSO and its teleconnection
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with the Asian summer monsoon are pivotal elements of global climate variability, significantly
influencing regional weather patterns, agricultural practices, ecosystems, and socio-economic
structures worldwide. ENSO, distinguished by anomalous warming (El Nifio) or cooling (La
Nifia) of SSTs in the central and eastern equatorial Pacific Ocean, impacts global atmospheric
circulation patterns, including the Asian monsoon systems (e.g. Ashok et al., 2007). The well-
established and extensively researched teleconnection between ENSO and the Asian monsoon,
especially over the Indian subcontinent and Southeast Asia, is noteworthy (Webster et al.,

1998).

On interannual timescales, the ENSO-monsoon teleconnection crucially alters the regional
precipitation patterns, temperature anomalies, and extreme weather events (Zhang & Sumi,
2002). Comprehending the dynamics and mechanisms of this teleconnection is vital for
enhancing seasonal climate predictions, managing disaster risks, and formulating adaptation
strategies in susceptible regions. Furthermore, in the context of ongoing climate change, there
is a growing interest in evaluating how the ENSO-monsoon teleconnection might transform in
a warming world and its potential consequences for regional climate variability and extremes

(Wang, 20006).

To evaluate the model's ability in simulating the ENSO phases and capture the global SST
distributions, we first constructed composite SST anomalies during the warm and cold events.
These composites were based on a 3-month moving average of (December—February, DJF)
Nifio 3.4 SST anomalies exceeding +0.5 K indicating El Nifio conditions, while those below -
0.5 K indicating La Nifia conditions. Since no annual smoothing was applied to the data, the
variability primarily reflects the interannual variability of the ENSO. The IITM-DCPS shows
strong agreement with observed SST variability in the eastern Pacific, exhibiting spatial
correlations of 0.83 for El Nifio conditions and 0.80 for La Nifia conditions (Figure 11). The
model yields a standard deviation of monthly SST anomalies of 1.03 K, compared to the
observed value of 0.78 K. IITM-DCPS's high spatial correlations (0.83 for El Nifio, 0.80 for
La Nifia) with observed SST variability suggest that it effectively captures the spatial patterns
of Bjerknes feedback, closely resembling the observed ocean-atmosphere coupling in the
eastern Pacific. However, the overestimated standard deviation (1.03 K vs. observed 0.78 K)
indicates that the model may amplify the intensity of this feedback, which is common in most

of the climate models (Bellenger et al., 2014).

The IITM-DCPS, like many CMIP6 models, exhibits a distinctive feature-a westward

18


http://bellenger.et.al/

extension (~10°E) of the ENSO pattern. This characteristic, while recurrent, serves as an
opportunity for continual refinement and enhancement within climate modelling. Researchers
have extensively documented this phenomenon (Guilyardi, 2006; Roberts et al., 2018; Van
Oldenborgh et al., 2005), presenting avenues for improving model skill and accuracy in
simulation and forecasting (Gong et al., 2015; Jiang et al., 2017; Tao et al., 2018; Li et al.,
2019). Moreover, understanding and addressing this feature could lead to advancements in
predicting shifts in precipitation patterns and atmospheric circulation, fostering more

comprehensive climate modelling frameworks (Misra et al., 2007; Ham and Kug, 2015.

The capability of the IITM-DCPS in depicting the simultaneous and delayed teleconnections
between ENSO and the monsoon was also assessed. This evaluation was based on a lead-lag
correlation analysis involving the Nifo3.4 SST and ISMR indices. Figure 12 presents the
observed and IITM-DCPS simulated lead/lag relationships between ISMR (JJAS) and monthly
Nifio3.4 SSTs, spanning from one-year prior (year —1) to one year post (year +1) ISM season
(year 0). During ENSO’s development stage, warm SST anomalies in the eastern and central
Pacific are linked with negative ISMR anomalies, while cold SST anomalies have the opposite
effect. This negative correlation gradually fades during ENSO’s decay stage. The IITM-DCPS
control simulation reproduces not only the significant negative correlation during and after
JJAS but also shows a pronounced and highly significant positive correlation (exceeding +0.6)
in the pre-monsoon months, indicating a stronger lead-lag relationship with ENSO than
observed. Overall, IITM-DCPS slightly overestimates the observed ENSO-monsoon
teleconnection, characterized by stronger than observed amplitudes while retaining the correct

large-scale coupling structure.

To evaluate the capability of the IITM-DCPS in simulating global precipitation responses to
ENSO, composites of mean precipitation were constructed for JJAS season for both El Nifio
and La Nina years (Figure 13) for the period used for the analysis as shown in Figure 11. During
El Nifio years, precipitation typically increases over the central and eastern equatorial Pacific,
with weak positive anomalies observed over North America and high-latitude regions of South
America. Conversely, dry conditions prevail in most land regions, such as Amazon, Australia,
South Asia, and the Maritime Continent. The reverse patterns are seen during La Nifia years.
The primary El Nifio and La Nifa precipitation patterns over oceans and land are generally
well captured by the IITM-DCPS. The pattern correlation between simulated and observed

precipitation anomalies is 0.46 and 0.5 for El Nifio and La Nifia composites, respectively. In
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addition to tropical precipitation, the model also shows skill in simulating anomalous

precipitation patterns in the mid-latitudes.

3.9 10D and SIOD representation in model.

Accurately capturing the variability of Indian Ocean SST in climate models is important, as it
influences the ISM and other climate modes. Several studies reported that the second leading
EOF mode of the tropical Indian Ocean SST, the IOD mode, affects ISM independent of ENSO,
and it also weakens the ENSO-ISM relation (Ashok et al., 2001; 2004; Cherchi and Navarra,
2013). In addition to the influence on other climate modes, IOD interacts with the subtropical
10 SST variability (SIOD) (Cretat et al., 2018) and there is a coupled feedback between IOD
and SIOD to enable an internal variability of the Indian Ocean independent from ENSO (Anila
and Gnanaseelan, 2023). Therefore, to assess how well the model captures SST variability of
tropical and subtropical Indian Oceans is crucial. Here, the EOF modes of tropical and
subtropical SST have been compared with observations. EOF analysis shows that the model
effectively captures the basin-wide anomalous SST signal associated with the first EOF modes
of the tropical Indian Ocean (TI1O) and subtropical Indian Ocean (SIO) (Figure 14). However,
there's a notable overestimation in the model's representation of SST anomalies over the TIO
region, particularly in the eastern TIO area. The model simulates the percentage of variability
of the first modes of TIO and SIO SST variability. Moreover, the model simulates the
variability of the second mode of the TIO, similar to the observation. While there's a slight
overestimation of SST anomalies in both poles of this mode, it is much closer to observations
compared to other CMIP6 models. Notably, the unrealistic westward extension of the eastern
pole, a characteristic seen in many climate models, is not found in IITM-DCPS. For the second
mode of SIO, the percentage of variance is underestimated by the model. The model
successfully captures the northeast-southwest dipole structure, a feature that sets it apart from
many CMIP6 models that struggle to represent this pattern. The regression analysis on the Nifio
3.4 index suggests that the model captures the ENSO-induced SST pattern over TIO and SIO,

but underestimates the strength, especially around 20°S.

IOD-monsoon relationship is analyzed by removing the effect of JJAS Nifo-3.4 in the
simultaneous partial correlations. The correlation between JJAS rainfall and the SST anomalies
of the eastern and western IOD boxes are shown in Figure 15. The model overall captures the
relationship between SST anomalies over the IOD boxes and the rainfall especially over central

India, northwest India, Arabian Sea and western and eastern tropical Indian Ocean regions
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though there are some discrepancies. This suggests that the model captures the observed IOD
monsoon relationship reasonably well, especially in the context of models in general fail to

capture the IOD ISMR relationship.

3.10 Evaluation Low-Frequency Climate Modes and its Influence on the Indian Monsoon

3.10.1 Physical Mechanisms and Model Representation of Decadal Climate Modes

The decadal predictability of the climate system arises from the combined influences of the
AMO, the PDO, and the decadal modulation of the ENSO itself. The remote influence of the
AMO operates through a slow oceanic teleconnection, warm AMO phases generate SST
anomalies that are subducted into the North Pacific Subtropical Mode Water (Wu.et.al,2020)
and advected over a ~10-12 year pathway (Wu.et.al,2025), eventually re-emerging in the
Kuroshio-Oyashio Extension to seed PDO variability (Zhang 2017). Alongside this remote
forcing, the PDO is also shaped by decadal ENSO variability, which is characterized by
changes in the frequency, intensity, and spatial pattern of El Nifio and La Nifia events over
multi-year timescales (Yeh et al., 2018). This decadal ENSO modulation is driven by oceanic
processes within the tropical Pacific, particularly the recharge-discharge cycle of the equatorial
heat content and its interplay with the off-equatorial subtropical ocean gyres, which provide a
multi-year memory (Dieppois et al., 2021). For example, a shift towards more frequent and
intense Central Pacific (CP) El Nifio events is a hallmark of a positive PDO phase, as the
associated subtropical SST anomalies alter the background state that favours CP El Nino
development (Lorenzo et al., 2010). The interplay between these decadal modes can set up
large-scale atmospheric wave trains that alter the westerly jet waveguide, inducing significant

precipitation anomalies across Eurasia.

The ability of climate models to capture these three interconnected mechanisms the AMO-
forced teleconnection, the intrinsic decadal ENSO modulation, and the PDO’s teleconnections
are critical benchmarks for the decadal predictability. While CMIP models simulate the broad
SST patterns of these modes, they often exhibit significant biases in the underlying dynamics.
A common failure is the inaccurate representation of the slow oceanic pathway linking the
AMO to the Pacific and the thermodynamic feedback governing the decadal ENSO recharge
cycle (Smith et al., 2020). These deficiencies contribute to a poor simulation of the observed
spectral peak of decadal ENSO mode variability and an unrealistic portrayal of the AMO-PDO
phase relationship (Zhang. 2017). Encouragingly, high-resolution models show improved skill
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in representing the ocean gyre circulations crucial for decadal ENSO and PDO dynamics.
However, persistent challenges, such as the spurious strengthening of the Spring Predictability
Barrier for CP ENSO in warming scenarios, highlight that accurately simulating the full suite
of physical mechanisms remains an ongoing priority for decadal prediction systems (Chen et

al., 2024).
3.10.2 Decadal Modulation of ENSO

In addition to its interannual variability, the interdecadal variations of the Indian summer
monsoon and tropical SST are also part of a coupled ocean-atmosphere mode, with the ISMR
showing strong correlation with ENSO indices (Krishnamurthy & Goswami, 2000). Studies
suggest that ENSO’s influence on the monsoon undergoes decadal modulation, likely due to
low-frequency climate variability such as the PDO and IPO, which modulate the strength and
spatial pattern of ENSO teleconnections (Meehl et al., 2009b; Xiang et al., 2013). During
certain decades, the ENSO-monsoon correlation weakens, attributed to shifts in tropical Pacific
SST gradients and atmospheric circulation changes (Kumar et al., 1999; Ashok et al., 2004).
Furthermore, model simulations indicate that external forcings, including greenhouse gas
emissions and aerosols, can contribute to these modulations by altering the background state
of the tropical Pacific (Dong & McPhaden, 2017). Understanding this decadal modulation is
crucial for improving seasonal and decadal monsoon predictions, as it determines the reliability

of ENSO-based forecasting strategies (Goswami et al., 2006).

Figure 16 presents a comparative analysis of SST anomalies associated with the decadal modes
of the ENSO, using both observational data and simulations from the ITM-DCPS. The analysis
employs Empirical Ensemble Mode Decomposition (EEMD) to extract decadal modes from
the Nifio 3.4 SST index, a key indicator of ENSO variability. Composite SST anomaly maps
are then constructed for both the positive and negative phases of these decadal modes, allowing
for a direct comparison between observations and model simulations. Observational data
(Figl6: a and b) reveal characteristic ENSO-like patterns, with warm anomalies in the central-
eastern equatorial Pacific during the positive phase and cool anomalies during the negative
phase. These patterns align with known impacts of the decadal ENSO modes on the ocean-
atmosphere system. Meanwhile, the [ITM-DCPS simulations (Fig 16: ¢ and d) broadly
reproduce these features, capturing the general spatial distribution of SST anomalies. However,
noticeable differences exist in the spatial extent and intensity of these anomalies, suggesting

potential limitations in the model's representation of decadal ENSO variability.
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A closer look at the correlation between observed and simulated SST anomalies further
highlights the model's strengths and weaknesses. The correlation coefficients (r = 0.68 for the
positive phase and r = 0.71 for the negative phase) indicate that the model successfully captures
a significant portion of the observed variability, though some discrepancies remain. The
model's ability to replicate the fundamental structure of ENSO-related SST anomalies suggests
that it can be a useful tool for studying decadal climate variability. However, differences in the
magnitudes and spatial distributions suggest that further refinements may be needed to improve
model performance. Examining the temporal evolution of the decadal ENSO modes and their
broader climate impacts plays a crucial role in decadal prediction. Additionally, investigating
the underlying mechanisms responsible for model biases could provide insights into how well
the IITM-DCPS represents complex ocean-atmosphere interactions. Understanding these
strengths and limitations is important for improving decadal climate predictions and enhancing

our ability to anticipate long-term climate variability.

The comparative analysis of SST anomalies in the figure 16 (c, d) highlights the ability of
IITM-DCPS to capture the spatial patterns associated with decadal ENSO modes.
Observational data reveal distinct El Nifio- and La Nifia-like SST patterns, with warm
anomalies in the central-eastern Pacific during the positive phase and cool anomalies during
the negative phase. The model generally reproduces these large-scale features, but with some
discrepancies in spatial extent and intensity. The correlation coefficients indicate a moderate
agreement between observations and simulations, suggesting that while the model captures key
aspects of decadal ENSO variability, refinements are needed to improve accuracy. Differences
in the representation of SST anomalies could stem from biases in the model's ocean-atmosphere

coupling, subgrid-scale processes, or external forcings that are not fully accounted for.

Following the SST analysis, Figure 17 examines the rainfall anomalies during the same
composite periods, offering insight into the atmospheric response to decadal ENSO modes.
Observations depict a strong relationship between SST and rainfall, with enhanced
precipitation over the central-eastern Pacific during El Nifio-like conditions and suppressed
rainfall in the same region during La Nifa-like conditions. The IITM-DCPS captures these
broad patterns but exhibits some discrepancies, which are reflected in lower correlation
coefficients. This suggests that while the model represents SST-driven anomalies reasonably
well, it struggles with accurately simulating precipitation responses, potentially due to biases

in atmospheric circulation, convection, or moisture transport. Understanding and improving
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these limitations is essential for enhancing climate predictions, particularly for assessing the

impacts of decadal ENSO variability on regional hydrological cycles.
3.10.3 AMO-monsoon teleconnection

The ISM rainfall exhibits multidecadal variability over the past 200 years, as evidenced by
instrumental records. This variability is found to be positively correlated with fluctuations in
North Atlantic SSTs, known as the Atlantic Multidecadal Oscillation (AMO) (Lea, 2021). The
AMO, a large-scale fluctuation in the SSTs of the North Atlantic Ocean, exhibits a complex
relationship with monsoon systems worldwide, particularly the ISM (Goswami et al 2006,
Dutta et al, 2024, Zhang et al, 2018). Decadal variations in AMO phases (warm or cold) have
been linked to changes in monsoon rainfall patterns, suggesting a teleconnection — a distant
atmospheric linkage — between these two climate phenomena. Understanding this AMO-
monsoon teleconnection is crucial for improving our ability to predict long-term monsoon

variability and its impacts on regional climate and agriculture.

However, the relationship between the AMO and the ISM has been somewhat controversial
from a modelling perspective. For instance, analyses of CMIP models from the CMIP3 have
yielded conflicting findings, where Ting et al. (2011) reported no discernible connection within
control simulations, while some studies suggest that it does not constitute a component of the
pure internal variability of the ocean-atmosphere coupled system. This discrepancy highlighted
limitations in CMIP3’s representation of AMO-ISM teleconnections. Initial research by Luo et
al. (2011) revealed a positive correlation between the AMO and ISM in a control simulation
using an improved climate Model. As research continues into CMIP5 researchers point out the
absence of significant linkage between the AMO and ISM in most models (e.g. Han et al.
(2016)). Beyond model-specific differences, the broader discourse considers various climatic
forcings such as solar, volcanic, and aerosol effects that further complicate the understanding
of their interconnected dynamics. However, recent research by Choudhury et al. (2022) has
shed new light on the ISM-AMO relationship. Their analysis of historical simulations spanning
CMIP3 to CMIP6 models indicates an evolving perspective. More than half of the models
demonstrate the capability to effectively simulate the variance of the AMO, consequently
increasing the variance of the ISMR. They also highlight that the ISMR can exhibit multi-
decadal variability with faithful variance only if its AMO counterpart demonstrates periodicity
between 50 to 80 years and possesses stronger variance, at least greater than 10-20% of its total

variance.
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From the observational point of view, the North Atlantic SST variability has been reported to
be associated with the variability of ISMR on multi-decadal scales (Goswami et al,2006, Wang
et al 2009, Zhang. & Delworth 2006) with the North-Atlantic multi-decadal variability, or
AMO, potentially influenced by both natural and anthropogenic aerosols. Ocean-atmosphere
feedback is found to play a crucial role in modulating this variability, suggesting the AMO's
role as an extra-tropical predictable driver for ISMR (Goswami et al 2022), supported by
evidence of decadal predictability in North Atlantic climate. The AMO holds a pivotal role in
influencing the ISM (Rajesh and Goswami, 2020), as evidenced by the obtained composite

SST anomalies during positive (+ve) and negative (-ve) AMO phases.

Here, while investigating the simulated teleconnection between the AMO and the Indian
monsoon in the IITM-DCPS, we first extracted the observed and simulated AMO index. The
power spectrum analysis reveals that the 65-year mode as seen in the observations are captured
by the model with moderate fidelity showing significant variance above the red noise spectrum
(Figure 18a,b). This index represents the domain-averaged SST within the North Atlantic
region over the region of maximal temperature loading. Subsequently, employing EEMD-
based filtering, multi-decadal mode is extracted, and the corresponding positive and negative
phases of the AMO are shown in Figure 18c, spanning approximately two centuries of data
period with slightly above three AMO cycles. From the decomposed AMO time series of both
observations and the model, a regression is performed on the observed and modelled global
SSTs to understand the SST loading patterns associated with the AMO. Comparison between
observational data and simulations from the IITM-DCPS, as shown in Figure 19, reveals a fair
agreement in the patterns of positive and negative SST anomalies. The analysis reveals the
model's capability to replicate the observed AMO SST variability over the North Atlantic.
Furthermore, extending the investigation to the JJAS rainfall anomalies across the Indian
monsoon domain, both observation and IITM-DCPS simulation exhibit contrasting patterns for

positive and negative AMO phases.

In observations, the composite rainfall anomalies (both +ve and -ve) exhibit a typical ISO type
large-scale horizontal structure (Figure 20), This is because AMO can modulate the clustering
of active phases during its positive epochs and clustering of break phases during its negative
epochs within the monsoon season, and these modulations lead to an increase or decrease in
seasonal mean rainfall (Rajesh and Goswami, 2020) and here we show that the difference

between positive and negative composite anomalies represents 10-20% of the variability of the
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total seasonal mean monsoon rainfall. The model-simulated rainfall anomalies also capture the
positive anomalies over the core central Indian domain during the positive epochs and the
negative anomalies during the negative epochs of the AMO with 10-15% variability. These
further highlights the model's fidelity in capturing the AMO-monsoon teleconnection through
a similar active and break clustering mechanism as found in observations. However, there are
some discrepancies in the rainfall pattern, possibly due to circulation anomalies associated with
the simulated Rossby wave train (Goswami et al, 2022) interconnecting the two. The fidelity
of IITM-DCPS in reproducing both the spectral signature and spatial SST patterns of the AMO
confirms that the model captures the fundamental dynamics of this low-frequency mode. This
capability provides a credible foundation for assessing AMO-monsoon interactions and their
role in driving multidecadal ISMR variability a critical step toward identifying sources of

decadal predictability.
3.10.4 PDV-monsoon teleconnection

The PDO (Mantua et al., 1997) and its basin-wide counterpart, [IPO (Power et al., 1999),
represent natural internal variability in the Pacific Ocean at decadal-to-multidecadal timescales,
in which, PDO focuses on the North Pacific, [PO encompasses the entire basin (Mantua et al.,
1997; Power et al., 1999; Folland et al., 1999; Allan, 2000.). Some researchers refer to this low-
frequency variability in the Pacific (PDO), as the SST anomalies in the northern basin during
the boreal winter (Mantua et al. 1997; Newman et al. 2016). Both exhibit characteristic patterns
of SST anomalies, featuring cold anomalies in the central North Pacific and warm anomalies
along the west coast of North America (Mantua et al., 1997; Deser et al., 2004). Several studies
highlight the influence of interdecadal variability in the tropical Pacific on global climate,
particularly on the ISM (Krishnan and Sugi 2003, Dai, 2013; Dong and Dai, 2015; Villamayor
and Mohino, 2015; IPCC, 2007). This interdecadal relationship shows an inverse correlation
between Pacific SST fluctuations and ISMR, with warm (cold) phases of Pacific variability
corresponding to decreased (increased) monsoon rainfall and vice versa. Additionally, the
atmospheric teleconnection patterns indicate a dynamic consistency between Pacific
interdecadal variability and atmospheric anomalies over South and Southeast Asia, suggesting
significant influence on Indian monsoon dynamics. The IPO does not have a unique frequency
that is well-defined, but it shows periodicities in both decadal (15-25 years) and multidecadal
(60-70 years) ranges (Minobe 1999; Chao et al. 2000; Tourre et al. 2001; Mantua and Hare
2002; MacDonald and Case 2005).
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We define the IPO as the difference between the central-eastern Pacific [150° E-150° W; 10°
S-10° N] and the tropical central-eastern Pacific [170° W- 90> W; 25 N-45° N] SST following
Huang et al (2020). Figure 21(a,b) shows the regression pattern of the annual mean SST onto
the unfiltered IPO index, illustrating the broad SST response associated with IPO variability
(units in K/K). This captures the full spectrum of IPO-related SST variability, including both
interannual and decadal timescales. The observed IPO pattern is characterized by significant
warm SST anomalies in the tropical Pacific with a characteristic ‘horseshoe ’shape in the North
Pacific, similar to an ENSO-like pattern, and extending to the extratropics along the western
coasts of the Americas. Two cold SST anomaly tongues are evident in mid-latitudes extending
eastward from the coasts of Asia and Oceania. In contrast, Figure 21 (c,d)focuses on the decadal
component of the IPO, defined as the 13-year low-pass filtered anomaly of the second EOF of
North Pacific SST, following the methodology of Meehl et al. (2016). It displays pattern
correlations derived by projecting the smoothed IPO index onto the SST fields from (a)
observations and (b) the IITM-DCPS. This comparison highlights the model's capability
(r=0.44) in capturing the spatial structure of decadal IPO signals, thereby providing insight into
the fidelity of ITM-DCPS in representing low-frequency climate variability linked to the IPO.
This suggests that the model reasonably represents the slow oceanic adjustment processes
including Rossby wave propagation, thermocline feedbacks, and meridional overturning
circulation that govern IPO phase transitions on multidecadal timescales. The influence of
Arctic sea ice on the Indian Summer Monsoon Rainfall (ISMR) has been an important area of
recent research, and incorporating Arctic sea ice analysis strengthens the relevance of our
model evaluation. The IITM-DCPS simulated Arctic sea ice concentration (SIC) across
different seasons, with a focus on summer and winter months is compared with the AVHRR
observations and the ORASS reanalysis dataset in Figure 22. It is important to highlight that
the model captures the SIC very well compared to the observation and ORASS highlighting its

potential to use for different applications.

4.0 Summary and Conclusion

This study comprehensively assesses the performance of the IITM-DCPS in simulating the
interannual to decadal variability of the Indian Summer Monsoon (ISM) and its global
teleconnections. The evaluation of the IITM-DCPS control experiment shows improvements
over the IITM-ESM, particularly in the simulation of key monsoon features and large-scale

climate teleconnections. Notably, the IITM-DCPS significantly reduces mid-latitude
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temperature biases, which have historically affected the accuracy of simulated atmospheric
circulation patterns. The model shows enhanced spatial representation of monsoon rainfall. It
also captures better the intraseasonal oscillations and tropospheric temperature gradients, both

crucial for ISM dynamics.

A major driver of these advancements lies in the incorporation of refined surface-layer physics
and updated vegetation and soil classifications, thereby improving land-atmosphere feedback.
Combined with the increased horizontal resolution in ITM-DCPS, these upgrades result in a
more realistic representation of surface energy balance, near-surface temperature fields, and
moisture feedback. Consequently, the improvements seen in both precipitation and temperature
fields reflect the combined influence of the updated surface physics and finer spatial resolution,
which collectively strengthen the model’s predictive capability. Furthermore, the ITM-DCPS
shows enhanced skill in capturing key global climate modes such as the ENSO, PDO, and
AMO which are fundamental modulators of ISM variability across various timescales. The
model shows improved performance in simulating the ENSO-ISM teleconnection, particularly
in capturing the lead-lag relationships and the spatial structure of precipitation anomalies.
However, some systematic biases such as the westward extension of ENSO-induced SST

anomalies still persist.

Beyond interannual variability, the IITM-DCPS also captures low-frequency climate
variability more effectively, which is essential for long-term prediction and planning. The
model reproduces teleconnections of multi-decadal modes such as the AMO-ISM and PDO-
ISM with reasonable accuracy, providing valuable insights into the mechanisms governing
monsoon fluctuations on decadal timescales. For instance, the model skillfully simulates the
~65-year periodicity of the AMO and its corresponding rainfall anomalies over the Indian
subcontinent. However, some spatial discrepancies particularly in the representation of
associated wave patterns and teleconnection structures highlight areas where further model

refinement is needed.

Importantly, the model also succeeds in capturing the PDO and IPO impacts on the ISM,
demonstrating its capability in analyzing Pacific-driven modulations of monsoon behaviour.
This is particularly relevant for understanding the phase-locked behavior of monsoon

variability and its relationship with evolving oceanic conditions in the Indo-Pacific region.

In summary, the IITM-DCPS contributes to ongoing efforts in Earth system modeling, with
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relevance to South Asian monsoon research and decadal climate prediction. Its improved
simulation capabilities make it a valuable tool for regional climate projections, long-term risk
assessments, and informing climate-sensitive policy decisions. However, the persistence of
certain biases such as those related to tropical Indian Ocean SSTs and cloud-aerosol feedbacks
indicates the need for continued development. Future research should focus on refining the
physical parameterizations related to acrosol-cloud interactions, and an improved land-surface

processes to further enhance its predictability.
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Figure 1: Schematic of IITM-DCPSvI, highlighting its key physical components, coupled
processes, and external forcings used for simulating and predicting climate variability on
decadal timescales.
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Figure 2: Time series of annual mean global mean (a) sea surface temperature (SST), (b)

surface air temperature (SAT), and (c) top-of-atmosphere (TOA) net radiation and (d) influx
and outflux at TOA of the control simulation.
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Figure 3: Bias in 2-meter temperature (first column), precipitation (second column), and sea
surface temperature (third column) from 200-year pi-control simulations of 13 Earth System
Models (ESMs) participating in CMIP6-DCPP, evaluated against observed climatology. The
observed reference climatology for temperature (NCEP-v3) and SST (ERSST-v3) corresponds
to the pre-industrial baseline averaged over 1850—1900 (DCPP models), whereas the IITM-
DCPS biases are computed relative to the present-day baseline averaged over 1981-2010.
Precipitation biases are evaluated using GPCP observations. Each row represents the mean
bias for an individual model, with units of °C for 2-meter temperature, mm day™ for
precipitation, and K for SST.
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Figure 4: Pattern correlation of JJAS climatological rainfall over the extended South Asian
monsoon domain (40°E-120°E, 10°S-40°N) for various CMIP6 Earth System Models (ESMs)
participating in the DCPP, based on their Pl-control simulations for 200-year period,
compared with observed GPCP rainfall. All other DCPP models are shown in green bars, while
IITM-DCPS is represented by the maroon bar.
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Figure 5: The annual cycle of all India rainfall from IITM-DCPS (red line), along with PI-
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control runs of various CMIP6 models participating in the DCPP for a period of 200 years,
IMD (dotted black line) and GPCP (black line) rainfall.
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Figure 6: Time series of simulated ISMR and seasonal mean circulation indices (MHI, TTG,
SMI, WYI, MCI and HWSI) normalized by their own interannual standard deviation for the
period of 200 years and the observation. The correlation between ISMR and the respective
variables are shown in the respective panels with observed shown in black colour.
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Figure 7: Annual cycle of meridional Tropospheric Temperature Gradient (TTG) (deg K) of

IITM-DCPS (model) and observation over the period of 200 years. TTG has been calculated
by averaging the air temperature over the column 600-200 hPa and taking the difference
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between the Indian monsoon domain (60-100°E, 20-30°N) and the equatorial region (60-
100°E, 5°S-5°N). The green shaded monsoon season highlights the period of positive thermal
contrast. The shading between the curves denotes systematic model biases, with positive biases
shown in red and negative biases in blue.
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Figure 8: Spatial distribution of the regression pattern of Vertically Integrated Moist Static
Energy (VIMSE, Jm™) over the column 1000-300hPa, with Indian Summer Monsoon Rainfall

(ISMR, mm) during the JJAS season. (a)Observation, (b) ITM-DCPS.
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Figure 9: Variance of the 10—20-day and 30—60-day intraseasonal oscillations (ISOs) for (a,
b) GPCP and (c, d) the IITM-DCPS control run respectively. The variance is computed from
JJAS daily rainfall filtered ISO components over approximately 30 years for both the model
and the observations.
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Figure 10: Heatmap illustrating the Empirical Mode Decomposition (EMD) variance
spectrum, showcasing the variance explained by different modes of climate indices (x-axis)
across various climate models (y-axis). The color intensity reflects the relative variance, which
is the magnitude of the percentage of variance explained by a specific periodicity band of the
original signal, of each climate indices for each model, and the annotations represented by the
number inside the matrix shows the dominant periodicity for the respective mode. The observed
variances for these indices are depicted in the bottom row of the figure.
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Figure 11: (a) December—February composites of events with a Nifio 3.4 sea surface
temperature anomaly greater than 0.5 K (El Ninio) and (b) less than 0.5 K (La Ninia) after
applying a 3-month running mean for sea surface temperature anomaly (K). (c, d), are the
same as above, but for IITM-DCPS (model).
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Figure 12: Lead-lag correlations between Indian monsoon rainfall (JJAS mean) time series
(IITM) and monthly Nifio-3.4 SST (ERSSTv5) from the previous year (vear —1) to the following
year of the monsoon (vear +1) (Black line). The pink line represents the same analysis using
the IITM-DCPS control run. The dashed line denotes 90% confidence level.
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Figure 13: June—September rainfall anomaly composites of (a) observed El Nifio events and
(b) observed La Nifia events for those years as used as in above Figure 11. (c, d), are the same

as above, but for IITM-DCPS.
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Figure 14: (a-b) First and (c-d) second leading EOF modes of SST variability derived from
HITM-DCPS and observation over tropical (shaded) and subtropical (contour) Indian Ocean
regions. The percentage of variance of the tropical and subtropical EOFs, respectively, are
given above the corresponding panel. Regression of Nino 3.4 on tropical (shaded) and
subtropical (contour) SST anomalies for (a) model and (b) observation.
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Figure 15: Partial correlation between JJAS rainfall with (a, c) JJAS 10D eastern-box SST
anomaly and (b, d) JJAS 10D western-box SST anomaly, for observations (left panel) and
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IITM-DCPS (right panel), computed by removing the effect of JJAS Ninio-3.4 to isolate the
1OD-monsoon relationship.

Composite SST anomalies of positive and negative decadal modes of ENSO
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Figure 16: (a) Composite of SST anomalies for the decadal modes of ENSO positive phases,
and (b) depicts ENSO negative phases, derived from observations through EEMD
decomposition (combined modes, IMF?2 [9yr, variance=18%] and IMF3 [12yr, variance=8%)])
of Nifio 3.4 sea surface temperature. Similarly, (c, d) present the same analysis for ITM-DCPS
(combined modes, IMF2 [9yr, variance=14%] and IMF3 [15yr, variance=4%]).
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Figure 17: (a) June-September rainfall anomaly composite for the positive decadal modes of
ENSO and (b) for negative decadal modes of ENSO, extracted for the same epochs as
illustrated in Figure 16. Similarly, (c, d) present the same analysis for ITM-DCPS.
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Figure 18: Power spectra of the AMO index from (a) observations and (b) IITM-DCPS, both
derived from the raw non-detrended time series obtained as the domain average SST values
over the North Atlantic (NA) (290°E-360°E, 30°N—65°N) domain during boreal summer
season, where the maximum SST loading is observed. The significance level bounds of 99% is
denoted by red lines, while the green line shows the mean spectrum red-noise modelling. (c)
The detrended anomaly time series of the AMO index (blue) from IITM-DCPS over the period
of 200-years. The background AMO signal, overlaid on its interannual variability, is
decomposed using empirical mode decomposition, shown as the black line.
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Figure 19: Regression of the smoothed AMO index using JJAS mean SST for (a) observations
and (b) IITM-DCPS (model). This approach generally eliminates the influence of high-
frequency variability that helps to bring the background AMO pattern.
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JJAS rainfall anomaly composites for AMO
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Figure 20: (a) June—September rainfall Indian monsoon rainfall anomaly composites of (a)
positive AMO phases and (b) observed negative AMO phases for those years as used as in
above Figure 13. (C, d), are same as above, but for IITM-DCPS.
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Figure 21: Regression pattern of the annual mean SST onto the unfiltered IPO index (units are
K/K) (a) observation (b) IITM-DCPS (model). Pattern correlations from projecting the
smoothed IPO index onto the SST of (c) observation and (d) IITM-DCPS, referred to as the
decadal component of the IPO. The decadal component of the IPO is defined as the 13-year
low-pass filtered anomaly of the second EOF of NP SST, following the method from Meehl et
al., 2016.
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Figure 22: Seasonal climatology of Arctic sea ice concentration (SIC) from (a) AVHRR
observations, (b) ORASS reanalysis, and (c) ITM-DCPS model simulation. Panels from left to
right represent spring, summer and winter seasons.
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