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ABSTRACT

The efficient Fourier transform (EFT) and
FPT algorithms are described and their
computational efficiencies with respect
to the direct method are discussed., An
efficient procedure i1s proposed for the
reordering of data set; the use of EFT -
algorithm for the initial Fourier trans-
forms and restricting the size of final
subsets to not less than 4 are also
suggested for saving computation time in
the FFT. It is found that on average the
FFT with the proposed modifications is
more than twice as fast as the original
FPT, The amount of overhead operations
involved in computer routine, based on
the modified FFT is estimated,

1l introduction

In recent years various spectral models of the
atmosphere have been developed by Bourke (1972, 74) and
others, and used extensively with success in meny dynamicsl
studies and numerical weather prediction. The current revil
val of the interest in spectral models, is apparent from the
sudden increaée in the volume of the reported studies using
spectral techniques, particularly in the last decade., It is
linked to the fact that presently spectral models zare as
efficient as grid point models with respect to computation

time which has been made possible by the advent of the trans-—

form method developed independently by Orszag (1970) and



Eliasen et al (1970) for spectral multiplications. In the
transform method the computation of the nonllinear terms are
performed in the following two stages. In the first stage
the variables are transformed from the spectrael space to the
physical space and the grid point values of the nonilinear
terms are obtained, For this purpose the grid point wvalues
of the variables involved in the non;linear terms at Gaussian
latitudes and equally spaced longitudes are obtained from
their spherical coefficients by the use of Legendre inverse
transform along latitudinal direction and the Fourier inverse
transform along zonal direction. Finally, the grid point
values of the nonllinear terms are obtained by multiplications
of the required values. In the second and final stage the
spectral representation of the non;linear terms are obtained
by computing the spherical coefficients from their grid point
values with the help of the Legendre and Fourier transform
along latitude and longitude respectively. The overall per;
formance of the transform method is determined to a large
extent by the saving achieved in computation time in perfor;

ming the Fourier transforms.

The purpose of the FFT (Fast Fourier Transform) is
to develop an efficient algorithm for computing the sums
occuring in the expressions for Fourier transform. The FFT
algorithm, generally involves recursive relationships, when
used reduces considerably the number of arithmatic operations

involved in computing the Fourier transform. The first FFT
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algorithm was introduced by Cooley and Tukey (1965) and sub;
sequently its other versions were developed. The original
FFT glgorithm of Cooley and Tukey requires that the length

N of datz set should be even and preferably its major part
be expressible as the products of factor 2 in order to
exploit the full potential of the algorithm, Some other
versions of the FFT ss discussed by Temperton (1977) seem to
be more efficient than the Cooley and Tukey algorithm and also
applicable to more general cases where the Cooley and Tukey
glgorithm fails, Even in cases when N can not be factori;
zed as a power of 2, but can be factorized as a power of some
cdd number, these methods are =pplicable, ﬂbwever, a1l these
FFT versions reguire more computation time for the N which
is factorisable as a power of some odd number compared to the
case of a nearest higher N, which can be factorized as a
power of 2, Therefore, it is still advantageous to improve
the efficiency of the FFT algorithm of Cooley and Tﬁkey in
order to make it comparable to the other fast versions of the

FFT.

The saving in computation time realised in actual
practice by use of the FFT algorithm is much less than the
theoretical expectation based on its computational efficienay,
The reason for this discrepancy between actuzl and theoretizal
efficiency ie due to the fact that considerable amount of
extra computation time is required for generating the various

indices for transfering information from one memory location



to another and the reordering of data set required in the
implementation of the FFT algorithm. The operationS'associa;
ted with these factors may be termed as over;head operations
and they are not taken into consideration in the theoretical
efficiency. Another factor responsible for slowing down the
performance of the FFT algorithm is the use of inefficient
method for computing the initial Fourier transforms. In this
study the main objective is to suggest the procedures for re;
ducing the computation times in the overhead operations and
in the evaluation of the initial Fourier transforms in order

to increase the computational efficiency of the Cooley and

Tukey algorithm.

2. The DFT and FFT algorithms

Let us consider a one dimensional periodic field
$(x) of period L, observed over a set of equally spaced
points {XJ} at the interval of A% , such that LS| =)Aax
The discrete figld is represented by the set'{fj} ,. Where
ﬁﬁ“=_f'f!ﬁ)“ denotes the observed value of the field at the
po;ni; X . The periodicity of the discrete field implies
ﬁhgﬁan+Jr={J“_ryhe?¢ N is the number of intervals in the
period 5 and assumed to be even. The discrete field {jii}

is represented as a discrete Fourier series

M-1 :
; A 5 21 mj in 20 mj
fJ o 2_0 + % (.Am C_os N + B Bin S—p=4)

g g 2T
AW, Gon Sl e (@)



where M = N/2 and A and B are the Fourier coeffici-

ents given by

N ) A
%'y :z::: = 2T _mj =
Am — ﬁ fJ COS N fOI‘ m = O’ 5 3 3 3 Nfz’
J=1
S )
N : -
Bm = % E fJ Sin E.J-FJ for m = 1’ S e N[Z—l

J=1

(Am, Bm) is the Fourier 'tr:_a.nsfoz'r_ﬂ of {fj} > _a-nd_{ fJ} is the
Fcurier inverse transform of (Am, Bm)° Egs (1) and (2)

together constitute a discrete Fourier transform pair.

The numerical algorithm based on (2) for computing
the Fourier transform will be called Direct Fourier Trans—
form (DFT). Iet us count one multiplication and one zddition
a8 one machine operaticn. The total number of the Fourier
Coefficients gre N apd forlggch cqeﬁficient,“N maahipe
operations.are.required .as evident from Bq (2). Therefore,
N* number of machine operations are involved in computing
alil the-Fpurier.co?ff;cieptse_hfhg @qsﬁ_time_qoqsuming part
of this algorithm is .the direct computation of the ' N trig-
nometric functions. ﬁowevgr; th;s_gpmpuﬁg?ipn time_can be
considerably reduced by using the following trighometric

relations :

Cos (n%—l)B = Cos n@ . Cos® -Sin n® . Sin@
and : i i S ey %ak5 )

Sin (n+1)© Sin n® . Cos® +Cos nO, SinO,



2 N®° number of machine operations are required for computing
N* number of triéhometric_fpnctions_ﬁrom_Eq_(B),_ppdg;_thgn
approximation that two multipliqaﬁiOns gnd one addit;on are
equal to two machine operations, which is very nearly true.
The final estimate of the total number of machine operations
required in computing the Fourier transform by using the 3FT

algorithm is 3N2.

An efficient Fourier transform (EFT) method as dis-
cussed by Ralston (1965) is based on the following algorithm

for computing the sums in Bq (2).

= § (fg+Tm cos BB - Tom) L. (4a)
and

B = & Uy , Sin 21'12111 ! .. (41)
where U an@ U2,m are computed from the following recu;

l,m
rrence relation.

2Tm : i
N Yeer,n = Yier2,m,

Uk’m; fi + 2 Cos { (5)

for k = N-1, F-2, w.., 1 and Uy, = Uy, = 0. The EFT
- algorithm-lies somewhere in between the DFT and FFT algorithm

in-computational efficiency. - The computation of Uk-m by

s it Zer arisial ol (BN i ey et B i s " (Rt
Bq (5) requires one multiplication and two additions, assuming
that the cosine function is stored. We can approximate this

to 4/3 machine operatiors. Thus the total number of machine
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operations required are 2N2f3._ Further, it is also assumed
that all the required_ﬁriébpmetric_fungtionshgrg_sﬁored_which
is a pracfical assumption in this case. ;ﬁ is evident from
above, that theoretical;y_the_E?T algorithm is 4.5 times

faster than the DFT algorithm.

5 The FEFT algorithm of Cooley and Tukey

Let us introduce a super§pript‘iq th?.FQu;}e; goe;
fficients to denote the length of data sgt. For saving a
few multiplications, we dropped the factor 2/N from Bq (2)
for further discussion here but_the coefficients so obtained
will be multiplied by this factor. The required recursive
relations for the Fourier coefficients for the Cooley and

Tukey algorithm are obtained from Bq (2) as follows :

N/?2 b2, T s N/2 = ke
N "Z - 2Mm (24-1) 5_—_ 2T m2 j
Am = - f2j-1 Cos ¥ + e faj_Cos ¥
J= J=1
or :
210 A i 1| ENfz
o m - 21 mj ao- 2 iEm ‘
Aﬂ = Cos N f2j—1 Cos N/2 * Sin N L f2j—1
j=1 j=1
N/?2 =
2T m E ; 2 m
Sin W2—1 + f2 ; Cos Wz—l
j=
or

N 2N N/2 o 2B N/2 2
Am = Cos __I_'I_Pé cm/ + Sin ""N-'_g Dm/ =¥ ng ?} emoe (68.)



Fimilarly it can be shown that

N ein 2WMm W2 2T m  ~N/2 N/2 :
Bm = =9in o CIIl + Cos i D]Il + Fm - v BB
wnere
/ N/2. =
N/2 _ E 211 mj
=1 :
y N/2 T
2 o m
- = f23-1 Sin —ﬁrgi y (7b)
=1 '

J=1
7§ ENfz 2T
!2 ; ml
Fﬂ = ij Sin ng, e L 85)
J=1
and m = 0y eseessi g,
(CE[2 . Dgf2) is the Fourier transform of the data set

{ f2j_l} , =1, +.... N/2, constituted by the odd

azta points and (ngz ,_Dgfz) is the Fourier transform of

the data set'~{f2j} Pl (S PGSR N/2, constituted_by the
even data points, and the length of each field is N/2. 1In
the first stage of the FFT method, the data set is split



into two subsets. The Fourier coefficients of the data set
are obtained from Eqs (63) and (6b). M % Nf4, when N/2 is
even and ML I (Nf4 = lf?) when N/2 is odd. it is clear that
from Egs (6&) and (6b) Fourier coefficients of the original
data set can be determined only up to ML. The regur81on_equa;
tions for determining the remaining Fourier coefficients, for
which m 1lies in the closed interval [Ml+l, M], are obtained

after taking into account the following symmetric relations

oN/2 ' N/2
N§2—m = cmx 2
2 ' 2
§¢2—m = “Dg/ » :
(9)
2
EgZZ—m i EE/ 2

and

/2

Nf2—m =

e

Replacing m by N/2-m in (6) and using (9) we get

- M = N/~2 y : o, :
s = =Cos HIB oy -sin HIE V2. 8%2  (10a)

B a 5 _ R i ‘ - | -2 : "
_dun %—}lﬂ %gfz +Cos ?-Tﬁr-ﬂ Dgf - FE/Z .+ (100)

it

BN

N/2-m

These are the required recursion equations for computing the

remaining Fourier coefficients.

In the second stage each subset is further divided
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into two subsets if N/2 is still even and this process of
splitting_vill_?e;continued_till each subset qontgingnqnly
gp_odd_nupber of data points; ﬁe can express the length of

data set as
~P
e e No 2

where NO and _2P_ are the length and number of the final
subsets respectively and p represents the number of times
the original data set is divided into subsets which is a

positive integer,

To understand how the FFT works, let us consider
an example of the data set of length N = 12, Iin this case
NO % J9- P ; 2 &and the number of subsets are 4, The complete
reordering of the original data set in the present example
is shown stage by stage in the Fig. 1. At the top of the
figure is shown the data set, which we call zeroth stage of
Tecdering poosRn TR IO Elsil D R Tingee She
values. of data and their positions with reference to the
zeroth stgge}-lip_thg figurglg“grpup“of_boxgs_representg the
data set or a_s;bsgt; _The_:eordgringhpf tpgmorig;pal_dg?a
set is essential, for the working of the éooley and Tukey
algorithm., The Fourier coefficients of each of the four
subsets can be obtained by the direct or the efficient
method. From these initial Fourier coefficients, the final

Fourier coefficients of the data set are obtained in two

stages a@s indicated in the figure, with the help of Egs (6)
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and (10),
4. Efficiency of the FFT’Algorithm

Let us consider a data set of length N, which is
splitted p times into the 2F subsets, each of length N_ .
-The number of machine operations required for obtaining the

oP th

Fourier coefficients of all the subsets, at p™ stage

by the direct.method is ‘2?;N$_(Hé - 1), the few additions

-required for the'zeroﬁh:goefficien?s afe neglecte@T._The

number of operations required for obtaining the Fourier coe-
fficients of all the subsets at each stage preceding the p'"
stage is the same and equal to_ﬁf_rﬁe?e,_we have not counted
the number of:mpltipliqgﬁipns-iﬁyqlfed in the computations
from Eq (lb).bepagsg_they_are same with those of_ﬁg f@),“ _
‘already taken into account;; Fu:ther; the additions éf_Eq (10)
are neglected because nearly én equivalent number of the ‘
machine operatiops are saved in the pompu?ations by using the
simplified form of the Egs (6)‘and (1b) for m ; 0 and M .
The recursion relations have to be used p times to get the
final results. Finally, the N Fourier coefficients so
obtained are multiplied by Z/N_and this means an additional

N machine operations. Therefore the total number of opera-

tions (97 required in the FFT may be written as
g = N (N, + p).

o
It is assumed in the above computation that the trignometric

functions are readily available., Thus the comparative effi-
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ciency (B) of the FFT over DFT is given by

LR =
3N, 2

S )

Tt is evident from Bq (11) that E is large for the higher
values of - p. In the direct method it is not practical to
store all the required triguometric functions, since the
number . of gtpragg_loqgtions;;qu;rgﬂ for thig_pgrppge_gre_
(ﬁ?ﬁ%_l), which ig_quitﬁ high for large :ﬁ' compared to the
ﬁumbe; of 1ocati0ns_(ﬁf2 + Ng) required in the FFT. The first
part in the abpve fprmﬁladrép??s§pts ﬁhg_pumperjéf distinct
trié@ometric functions required in_fﬁ) and ﬁlb)? and the
second part for obtaining_the_initial_Eouriér coefficients_of
the final subsets by the direct method, which is quite small,
and hence a practical proposition to store them., This feature
cf the FPFT ig one of the major factors for the large gain in
computational time. The actual gain in the FFT over DFT
given by Bq (11) is an over estimate, since the requirement

of reordering of the data set”and genergtion of_g_number of
indjgeg.required_for the_effegt;vg use of the recursion rela;
tions ?ithout using gxﬁ;a mempry_storage means_extra opera;
tions which are not considered in the derivation of Eq (11).
It may be added here that the computational efficiency éf the

FFT with respect to the EFT is 2/9 times of E.
Do The proposed reordering procedure for the FFT

In this and the next section we shall discuss the
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main objectivgsﬁof this.paperdnamely :_(a) accelgrating_tpe
process of reordering of the data set into the subsets and
(b) increasing- the efficiency.in computing the initial Fqurier
transforms. - The reordering of the data set can be achieved
py_gvpgny stgpgu@ireqt_sp1;tting procedurg_where”oﬁd apd_even
positioned values are group together at each step . This
proqg@gre for_the_?gordgring_;s inefficient in performance

as will be shown subsequently;

Erom_the example illustrated by Fig. 1 and from
other exgmples,'the follpwing rulg rega:ding.the reorde;ing
process_qf“the;original @ata set can easily be deduced by
inspection. It may be noted in this connection that the
index of data which occupies the first position in the first
subset is 1, the remaining (NO % 1) data in this subset have

indices which are higher by ZP”frgmltpg_preceding one, Fur-

ther, the indices of the data in the pgxt 2°( = 1) subsets
are larger by 2P7. from the corresponding indices_of the
first 2° ( = 1) subsets, the indices in the next 2( = 2)

subsets are;larger'by_'Esz_.frpg the corresponding index of
the first .2'( = 2) subsets; and.so on, till finally the _
indices of the data in the last 2?f;__5gbsgts are larger by
2° (= 1) from the corresponding indices in the first 2' ©
subsets. b??_iﬂ‘ denoter index of the data point in the
original seﬁ, which now occupies the position m, in the re;

ordered set.
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The rule for correspondence between the positions
of data points in the original and reordered data set can be

represented mathematically as

G P-j ;
im = (lm—k 4 2 o o clz)
_vl"h‘;‘re j = 0, l, 2, s 2 o.o o.a ° " P‘- ;
m= 2, R R e : Na_for G PR

e, 2 0 s Wil tor .25 s B

k=1 for j= 0 3

and qu = 1.

Using these indices ?m the reordering of data set is accom;
piished in a single step., This procedure of the recrdering
in FFT is easy to program and is implemented without any extra
memory requirements., We can call the FFT with this reorder;

ing procedure as the modified FFT.

Qomputgﬁ;bﬁa; times of the FFT for different lengths
N aie_g;ygn”in1fap;? ;? _églumgWB_gpowg_the time.r§qpiyed for
the modificd FFT and column 4 is for the FFT with the
recrﬁeripg praaess_bgsed_og_ﬁﬁeugpl;ﬁting;éf a set”intp gub;
seis, stage by stage. In both the cases the DFT method vas
used for the initial_Four;er transformsl it can pe_seen_by

comparing the time noted in the two columns that the present
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reordering procedure resulted in the decrease of_theugompgta—
tional time by abpgt_4pj{,_for the casesuwhen_lm; o s Hoy;

ever, when 'ﬁé = 3, this decrease is only around ??Z,? fh;s

difference in the efficiency in the tWo cases is due to the

fact thet in the second case when Ny = 3, the relative cone

t;ibution_gf-theJreprder;ng_tipe tp thq_total time is less

compared to the first case when N, = 1.

6. An efficient FFT (EFFT) algorithm

From Table 2, it can be seen that the EFT algqrithm
is far superior to the modified FFT for N £ 8. However, it
is expected because even the theoretical efficiency of the
FFT as given by (11) is considerably less than that of the
EFT.

Therefore,_in order to increase further the effi;
ciency of the modified FFT, it is proposed that the each sub;
set of the reordered set must not have less than four data
points, i.e., Ng >4, and the initial Fourier transforms are
to be obtained by using the EFT algorithm, “The_FFf:a;goréthm
with this modification coupled with thg_modified reordering
procedure for the datalset, discussed in the last section,
will be called as EFFT, Tt may also be noted that the sto;
rage requirement for the trié@ometric functions, (N/2 + No)
in number is considerably 1less, particularly for large Ng,
than the case when DFT is used for obtaining the initial

Fourier coefficients.
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A comparison between columns 4 and 6 of Table 1,
has shown that the saving of computation time in the EFFT
is around 55/ of the FFT, for the cases when Nﬁ =1, in
other casea when N, -3 it o shout 40f, . Tais aifference
in the saving oﬁﬁthe opmputatioprt;mes_fgr the ﬁﬁo_different
types of cases is as_exp?aipgd in the lgst Section:_ Thus_
the EFFT is more than two times fastg;_thanitpeiF??fr_itris
not possible to make precise comparison of the computation
times between the E?FT; proposed here and the other_fasﬁ”
versions of the FFT. A rough estimate. of the efficiency of
the EFFT_can be_optgined_with_the_help_of_QPU times on
CDC-6600, reported by Temperton (1977), for the routines
based on his version of the FFT and that of Norman Bgrnner
of MIT, based on Cooley and Tukey version of the FFT, for
the power of 4. The computation times were reported for the
Fourier transforms of different lengthsN. After taking into
consideration the difference in the speed of the pr_com;
puter models, it can be said“that.thg EFﬁT gsnp?oposga“yere
is gomparable to the other versions in the computational

efficiencyl

A self explainatory Fortran program based on the
proposed EFFT for obtaining the real Fourier transform of

length N is given in Appendix.

Te BEstimation of the overhead operations in the EFFT

As indicated earlier, the theoretical efficiency
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of the FFI is not achieved in ife actual performance. This
in the toksl compuietion tiks. e inoresos du e effisi-
ency of EFFI.ia contributed mostly by saving in the computa-
tion times of ove;head calcglations due_tq_thg gugggsteq“”
procedures for th;s_purpose§ It seems natural to know the
amount of overhead operations'(ﬁ) still required in the EFFT
as a percentage of the main machine Qperations, counted for
computing the theoretical efficiency. it is understandable
that the number of overhead arithmatic operations iszdepen:
dent upon the parameters p and No . The number of main
machine operations requ;red in the_EEFT is also a function
of these two parameters, A more simplified assumption and
still realistic may be that the ratio of the overhead and the
main operations is a constant. Under this assumption the
theoretical (El) and actual (Ei) efficiencies of BFFT with

respect to EFT are related as

5 _ |
S, PR i .
B = [T or AL3)

where

Bi is computed as the ratio of computation times of EFT and

BFFT presented in columns 3 and 6 respectively of Table 1
and B from Bq (11). R is computed for different data
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lengths N of the table, and its average value is determined
to be 1_1!.32,_ This means that even in the present form of
?fFT, more computation time is used in performing overhead
operations than the main pperations;_ on the basis of above
result, it can be said. that still there exists a scope for
achieving significant gain in-computational efficiencies of
the various EFT algorithms by further reduction in the number
of overhead ppergtipns g;one:A_further_calqulgtions revealed
that around 362:Qf_the total Qvérhea@ computation time is

utilised in the reordering procedure:

8. Conclusions

It has been shown in this paper that the computa-
tional efficiency of -routine based on the Cooley and Tukey
algorithm can be considerably enhanced and made comparable
to the other recent fast versions of FFT by reducing the
overhead computation time inyp;vgd_anq_by using the eiﬁicignt
algorithm_ﬁor_compgting the initial Fourie;.t?apsﬁorms, For
this purpose ap_efficignt procedure has been proposed for'the
reordering of date set. It has been demonstrated that by
restricting the size of final subsets tp be not less than 4,

significant saving in computation time can be achieved.
Further, it has been estimated that in the accelerated ver-
sion of the FFT algorithm of Cooley and Tukey, the computa-
tion time associated with performing of overhead operations

is greater than that of the main operations, even after in-
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ccrporating the proposed modifications for this purpose.
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APPENDIX

MAIN PROGRAM FOR FOURIER SERIES ANALYSIS
COMMON/H1/IPT NS ,NF, NF1,NF2,NF3,IEOD,FSN,PIE,MMAX1,
NDATA,IPQ 128

COMMON/H2/CF 35),93(35), GFF(5),SFE( 5)
DIMENSION Y( 128) FV(128)

FORMAT(13)

FORMAT(1X,12E10.3)

FORMAT (1x 20HFOURIER ANALYSIS FOR,1X,I3,11HDATA POINTS)
PIE=3. 14159265358

NDATA NO. OF DATA POINTS

READ 1,NDATA

READ DATA IN FV LOCATION

CALL REARG

CALL CSFUN

PRINT 101,NDATA

CALL EFFT(FV,Y)

¢0S FOURIER COEFFICIENTS IN FV AND SIN COEFFICIENTS IN Y
PRINT 100,(FV( I) Y(I)), I=1,MMAX1)

END

SUBROUTINE REARG
COMMON/H1/1IPT,NS,NF,NF1,NF2 ,NF3, IEOD,FSN,PIE,MMAX],
NDATA,TPQ(128)

N=NDATA

AL=N

FPSN=2./AL

IPT=0 _

IF(N/2%2 .NE.N)GO TO 5

N=N/2

IF(N.GE.4) GO TO 3

N=N+N

G0 T0 5

IPT=IPT+1

GO0 TO 4

NF=N

IEOD=1

IP(NF/2%2 .NE.NF) IEOD=2

NF1=NF=1

NF2=NFs=2

NF3=NF-3

Kl=1

K2=NF

IK=NS -

IPQ(1)=1

MM==TPT:1 -

PO 7 I=1, MM

KK1-K1+1

DO 8- J=KK1,K2

JJ=J~K1

IPQ(J)=IPQ(JJ)+IK

K1=K2 |

K2=K2+K2
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C THIS

Qa Qaoagaq

s b

IK=IK/2

RETURN

END

SUBROUTINE CSFUN

COMMON/H1/IPT,NS, NF, NFl , NF2 HF3 IEOD FSN,PIE,MMAX1,
NDATA,1PQ(128)"
OOMMON/H2 CF(35), SF(35) CF'F(5) S‘FF(S)
IMAX=1

IF(NF.NE.4) IMAX_2

DO 10 I=1,IMAX

IF(I.BQ.25 60 TO 5

LL=NDATA/ 4+1

T=PIEXFSN

GO TO 6

LL=NF/2+1

ANF=NF

T=(PIE+PIE)/ANF

G:COS{Tg

S=SIN(T

Cc1=1.

§1=0.

D0 10 I=1,LL

IF(I.EQ.2) GO TO 7

CF(L%:CI
SF(L)=S1

G0 TO 8

CFPF(L)=C1

SFF(L)=S1

A—-C1%C-S1%*S

B=S1xC+C1%S

Cl=A

S1=B

RETURN

END

SUBROUTINE EFFT(X,Y)

SR COMPUTE FOURIER COEFFICIENTS BY THE EFFICIENT FFT
ATGORI THM :

COMMON/HlfIPT NS,NF, NFl , NF2 NF3 IEOD FSN, PIE mmax1
NDATA, IPQ}128
C OMMON/H2/CF(35), SF(35) ,CFF(5), SFF(S)

DIMENSION X(128),Y(128), D¢9)

INPUT DATA SET IN X ‘

NDATA NO OF DATA IN GIVEN SET. NDATAﬁNF NS

NF N0 OF DATA IN EACH FINAL SUBSET

NS=2%%IPT NO OF SUBSETS

MMAX1 NO OF FOURIER COEFFICIENTS REQUIRED
MAXFC=(NDATA/Z +1 )MAXIMUM POSSIBLE FOURIER COEFFICIENTS
FOR DATA SET ,

X(1) NOT AT ORIGIN,X( NDAT&) AT 2 PIE

MAXFCG=NDATA/2+1

IF(MMAX1,GT . MAXFC) MMAX1=MAXFC

REORDERING OF DATA SET
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DO 5 I=1,NDATA
J=IPQ(I)
Y(I)=X(J)
MM=NF/2+1
HMM=MM
IN=&1 o
ZK=, 5% (1 .+HMM)
ZKI=7K
=-NF
KK=-MM ;
COMPUTATION OF INITIAL FOURIER COEFFICIENTS OF
SUBSETS IN D
COSINE COEFFICIENTS IN X AND SINE ONE IN Y
DO 10 I=1,NS
ZK=-7K
K=K+NF
IZON=ZKI+ZK
KK=KK+MM
II:=KX+IZON
IN=-IN
SUM=0, -
D09 J=1,NF
JI=K+J
D(J)=Y(JT)
SUM=SUM+D(J)
IIO0=II+IN
X(II0)=8UM
Y(II0)=0.
CODING FOR N=4, FOURIER TRANSFORM
IF(NF.NE.4)GO TO 8
ITI=TIIO+IN -
K(III§=D(43=D52)
Y(III)=b(1)-D(3)
III=IIT+IN

X(IIIg:D(2)+D(4)—D(l)—D(3)
Y(III)=0.

GO TO 10

MI=IIO

DO 7 M=2,MM
MI=MI+IN

CE=CFF(M)
TCE:=:CB+CE
SE=SFF(M)
UP2:B(NF1;
UP1=D(NF2 )+TCERIP2
L=NF2

D0 6 J=1,NF3

L=I-1
U=D(L)+TCEXUP1-UP2
UP2=UP1

UP1=U

Y(MI)=U%SE
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X(MI )=D(NF)+UPL*CE~UP2

10 CONTINUE

19

i

18

=
\n

T

K2=N8S
DO- 20 1=1,IPT

K2=k2/2

JJ=-MM

I N=MM+MM

MM2=MM-1
IF(I.GE.IEOD) GO TO 19
MINW=1

IS=0

IM=0

G0 TO 18

MINW=-2

I8=2 -

IM=-K2

I1=MM - :

DO 17 J=1,K2

I2=II+1

X2=X(12)

SY1=Y(T1)

Y2=Y(I2)

SX1=X(11)
x(11%=x2+SY1
Y(11)=Y2-8%1

I1=T1+IN
KMM=K2%MM+IM+1

D0 16 J=1,K2

JI=JI+IN

JJl=JJ+1

IML-==

DO 15 M=MINW,MM2
J1=JJ1-M

J2=JJ+M

J28=J2-TS

IML=IML-K2

CE=CB (IML)

SE=SF (IML)

Xie=X(J1)

XL&F@%
Y1=7(J1
Y2=Y(J2)
CCO--OEBXX1+SBXY1
S5C0:--~SExX1+CExY1
X(J1)=X2+6C0
X(J28)=X2-CcC0
Y(J1)=Y2+8C0
Y(J28)=-Y2+8C0
J1=J1-1

J2=J2+:
J28=J2-I8
X1=X(J1)
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X2=X(J2)

X(J1)=X3+X2

X(J25)=-X1+X2

Y(J1)=0 -
Y(J289=0.

NM=IN=IS"

IF(K2.EQ.1)60 TO 20

IF(IS.EQ.0)GO TO 14

J1=0

JJ=0"

PO 13 J=2, K2

JI=JJ+IN

J1=J1+I8 -

DO 13 M=1,NM

J2=J J+M

ML=J2=J1

X(ML):XEJQ%

Y(ML)=Y(J2

IT=1

Jd==NM

IN=NM+NM

DO 12 J=2,K2,2

Jd=dJ+IN

II=II+IN -

DO 12 M=1,MM

J1=JJ+M

J28=II-M

X1=X(J1)

X2=X(J28)

X(Jl)=X2

X(J28)=X1

Y1=Y(JL)

Y2=Y(J28)

Y(J1)=Y2

Y(J28)=Y1

MM=NM

CONTINUE

COSINE COEFFICIENTS IN X,AND SINE ONE IN Y

DO 25 I=1, MMAX1

X(I):X(I)HFSN

Y(I%:Y(I)*FSN

X(1)=.5%X(1)

RETURN

END
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