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Diagnostic Model of the Surface Boundary Layer — A New
Approach

By
Subroto Sinha

{ Indian Institute of Tropical Meteorology, Pune — 411008, India ]

Abstract

The diagnostic model 6f the Surface Layer (SL),described here, attempts to evaluate all
the basic parameters, except those of moisture and moisture related parameters, using the
wind and temperature observations at two levels only. It uses the Businger-type
formulation of the non-dimensional profile functions for heat and momentum, but
evaluates the “constants” used in these formulations, separately for each data set. The
methodology of evaluating these constants is discussed in detail. The roughness heights
for momentum and temperature are also evaluated separately for each data set. The
Monin-Obukhov(M-O) stability length is obtained directly as a solution of a cubic
equation, for unstable stratification, and as a solution of a quadratic equation, for stable
stratification. The Kansas Field Experiment Data (1968), is used for computing the M-
O stability lengths and the surface fluxes of heat and momentum. The computed values
are in close agreement with the observed values of these parameters. Wind and
temperature at all the standard levels were computed from the profile functions and
compared with the corresponding observed values. The percentage differences between
the two values are found to be very small.

The percentage differences are also evaluated using the iterative method with Businger’s
profile functions and a constant surface roughness height for momentum as well as for
temperature. Both the roughness heights are taken to be the same. The percentage
differences in this case were found to be much larger. A variable roughness height for
momentum, as well as for temperature, reduced the percentage differences considerably.
A method of computing the height of the surface boundary layer, has been developed and
it is shown that the mean percentage differences between the computed and observed
values of wind and temperature, are larger for those data levels which are above the
surface layer.



List of symbols

C,  : Specific heat of air in SL, under constant pressure

f . Factor representing the ratio of “q” to “p” in the cubic equation of the SL
fo Value of “ f” in neutral stability

4 . Coriolis parameter at the earth’s surface

g - Acceleration due to gravity

h . Depth of the SL obtained by iteration

h; - Depth of the SL obtained by using empirical expression
H : Sensible heat flux at the surface

k . Von-Karman constant

K CoefTicient of eddy viscosity

1 Monin-Obukhov stability length

Ri Gradient Richardson number

Riy Richardson number at displacement height

i i~ Temperature at level “17”

T, . Surface temperature

T . Mean representative absolute temperature of the SL
T . Turbulent temperature scale

TPr  : Turbulent Prandtl number

U Turbulent velocity scale or friction velocity

U :  Total wind speed at level “17”

z . Vertical coordinate representing height above surface
Zy Displacement height

Zs - Roughness height for momentum

Zo - Roughness height for temperature



L Geometric mean of the heights of the two lowest levels of observations
p : Density of dry air in SL

Non-dimensional height (=Z/L)

o . Valueof & at Z=z,

Om . Non-dimensional profile function for wind

on : Non-dimensional profile function for temperature

T . Reynold’s stress

To . Surface stress (= pu.?)

T : “Constant” used in the empirical profile function for wind in unstable
stratification

Y2,¥4 - “Constants” used in the empirical profile function for temperature in
unstable stratification

Y3 “Constant” used in the empirical profile function for wind and temperature
in stable stratification

s :  “Constant” used in the empirical profile function for temperature in stable
stratification

o : Ratioof ¢ppto ¢y

[s"w]: Vertical flux of the turbulent parameter s



1. Introduction

There is a growing realization amongst numerical modellers that the surface fluxes of
momentum, heat and moisture, determine to a large extent the steady state of the
atmosphere. Besides, the surface fluxes also determine the mean profiles of the
parameters in the SL and in the atmospheric boundary layer. Direct measurement of
these turbulent fluxes is difficult and expensive. A practical way is to devise a method
of computing the fluxes accurately from a minimum number of observations, taken
with the help of comparatively simpler instruments.

The most popular method of computing fluxes is the profile method, based on the
similarity theory of Monin and Obukhov (1954). In this method flux-profile
relationships are formulated, which express the vertical gradients of mean wind and
temperature in terms of universal functions of a stability parameter. The form of these
functions for various stabilty ranges is determined empirically from the data obtained
from field experiments. The most widely used form of the functions are the ones
obtained by Businger et al (1971), in which, certain universal constants are used.
However, the similarity concept is based on an idealized model of the steady and
plane parallel flow along a flat and homogeneous wall. The values of the universal
functions computed from observed data show considerable scatter due to the
deviations of the actual flow from the stated ideal conditions. A major contribution to
these deviations appears to stem from conceptual deficiencies in defining the form of
the universal functions in terms of certain “constants™ and, in treating the roughness
height, z,, as a local parameter which is based only on the physical dimensions of the
surface irregularities and therefore, constant for a particular location. In the earlier
studies, there was no attempt to distinguish the roughness heights for momentum, z,,
and temperature, Z.

Berkowicz and Prahm (1982), gave a detailed evaluation of the profile method for
estimation of sensible heat flux and friction velocity from wind and temperature data
at two levels only, using numerical iteration. They showed that the error in
estimating the friction velocity will be less, if an accurate value of z, is used, as
compared to using wind differences. According to Beljaars and Holstag (1991), the
roughness height concept is only applicable to homogeneous terrain, whereas in
practice, the terrain is very often inhomogeneous at all scales. Lo (1977), introduced a
method based on the principle of weighted residuals, to evaluate the roughness height
and the displacement height. The result of this study indicated that the roughness
height is a function of the wind speed. An increase in the wind speed breaks up larger
eddies into smaller ones at the top of the roughness elements, which increases the drag
coefficient and roughness height. The roughness height for temperature is different
from that for momentum, owing to the difference in transport mechanisms for heat and
momentum, very close to the surface. In this model the values of z, and z, are
evaluated separately for each data set

Byun (1990), obtained analytical solutions of the surface layer equations using the
profile functions in the form suggested by Businger et al (1971). In the case of
unstable stratification, a cubic equation in the non-dimensional stability parameter,
£=Z/L, is formed whose exact solution in terms of the gradient Richardson number is
obtained. However, real solutions can be obtained only if certain conditions are



The present model attempts to adapt the Businger’s form of the profile functions to the

non-ideal nature of the flow, by computing the “constants” in the expression for the

functions, for each data set, using certain formulations. The data obtained in the Kansas

Field Experiment (1968), and published by Izumi et al (1971), are used in this study. The

wind and temperature data at heights of 2m and 4m, respectively, are used to compute the

following parameters of the SL:-

(a) The displacement height Z4

(b) The Monin-Obukhov stability length, L, which is obtained analytically as a solution of
certain algebraic equations.

(¢) The turbulent velocity and temperature scales, u. and T. ,respectively.

(d) The roughness heights for momentum and temperature.

(e) The surface heat flux, H, and the surface temperature, T

(f) The depth of the SL and the coefficient of eddy viscosity, Kn, within the layer

2. Computation of SL Parameters
(a) Displacement Height

The displacement height Zy expresses the adjustment of the representative height of
measurement at the site of the observation, to account for possible upwind variations in
relative terramn. It may depend on wind direction, the nature of the surface and stability.
Some authors identify it as the height at which the extrapolated logarithmic wind profile
intersects the Z-axis. It is treated as a constant and signifies the height below which the
logarithmic wind profile does not hold. Stearns (1970) computed the displacement
height by minimizing the sum of the squares of the errors between the wind speed
observed at several heights and the wind computed from the theoretical expression for
wind variation with height

In this model, Z4 is not treated as a constant, but is computed for each data set. It is
regarded as a function of the stability parameter, represented by the gradient Richardson

number, Ri.
g(AT)(Az)
RiI=—nmn—nnvwovno-- 2.1)
Ta (AUY
Where AT=T>-T); AU=U;- U;; T, =T, +273.0; Az= z,- 2,
Unstable case : In this case the non-dimensional wind shear, as a function of Ri, is
expressed as:
bl BN =B RN N s s S T (22a)
Define C, = (U U)"YAU .(z /z1)and 8= C, (U, /U;) ... (2.21b)

If ¢m(R1q) represents the non-dimensional wind shear at the displacement height, where
the Richardson number is Riy, then the ratio of the two wind shears is assumed to be
given by the following expression :

dm(Rig) .
e SESRGRRRINE e S SRR R (2.3)
bm(Ri)



Stable case: In this case, the non-dimensional wind shear is expressed as :
dm(Ri) = 1.0+ C, Ri e (24 9)

where C; is given asin Eq.(2.2 b)

The ratio of the non-dimensional wind shears is given by the following expression:

Define &= (Uy/ Uy)* .. (24b)
¢u(Ria )
e ATOEER AR o T e 2.5)
du(R1)

Having obtained the values of ¢n(Rig ) from Egs. (2.3) or (2.5), Rig can be obtained as
follows

(1.0- 1.0/[¢a®ig)]*YC; Ri < 0.0

Riy =
( u(R1g) - 1.0)/C, Ri > 00
Obukhov (1971) expressed the Richardson number as:
kg H(pG; )
Ri=z ——— { $u(Ri)}"”
au’
oRi kgH/pC,) R
—_ F m—= — csnesf26)
oz |z—0 aw’ z
Atz >0 $(Ri)—>1
Close to the surface , Ri can be expressed as:
oRi
Ri=Rigde——ilgg=dgh .~ - L= i s 2.7
0z

Applying Eq.(2.6) for z=Z,, the expression for the displacement height becomes:

TeadB | - L e

(b) Monin — Obukhov stability length “L”

This is the most important parameter of the SL and all the other turbulence parameters
are functions of the non-dimensional parameter (z/L). The gradient Richardson
number can be expressed as:

ou@@l) z
L S 2.9)
{dmL)} L



Unstable Case
Businger’s expressions for the non-dimensional wind and temperature shears are as
follows:

oM(E)=(1.0-1 E)™;  du(E)= ys(10-7, )" e sl Bt )

where y;,y> andy, are the “constants” to be evaluated. Substituting Equation (2.10)
in (2.9) and rearranging, the following cubic equation in “£”is obtained:

ik < emE OB =l - T e e 2.11)

where Cy = Ri/y,. The above equation can be solved by Cardano’s method, as
shown in Appendix — 1. The final solution is given by :

E= |Ri|®i3 - 1)/(1 +Ri) (2.12)

Stable Case
In the stable case the non-dimensional profile functions for momentum and heat

are defined as follows:

mME) =1+1E; @) =ys+718 (2.13)
[{(1-VRi)(1+VR)]? [025y/Ri 003<Ri<0.1 (2.14a)

b f{u ~ Ri)/(1 +Ri)] ¢ =[75\175/Rj Ri>0.1 (2.14b)
ys = [(1 = Ri)/(1 + Ri)] ¥ = (ys)'NRi Ri< 0.03 (2.14c)

Substituting these values of ¢n (E) and ¢u () in Eq.(2.9) and rearranging, we get the
following quadratic equationin & :

BMRI-DE +27- y5)E +Ri=0 (2.15)
The solution of this equation is given by :

@yRi-v) [@uRi-7y)Y-4pRi@pBRi-1))72
£ + (2.16)
2y3(p3 Ri-1) 2vs(y3 Ri-1)

For the condition 0.03 < Ri < 0.1, the solution becomes :

Vs
7 Sl AT 2.17)

3 (2 +Vys)

(¢) Turbulent velocity and temperature scales

The non-dimensional wind shear is given by :
om (§) = kz/un. (Qwaz) (2.18a)
E

Hence Au=u.fkfé0 dm(E)/E dE (2.18b)



The non-dimensional temperature shear is given by:
ou(&) = z/ T. . (0T/0z) (2.19a)
g

Hence AT=T. Im du (&) /& d& (2.19b)

Unstable Case:

Substituting the expression for ¢y (E), as given in Eq.(2.10), in Eq.(2.28a) and
integrating with respect to £, we get the analytical expression for the wind at any height
z, as follows:

wl (-0(® (- 1
u=—1|In1 b — Ind P+2 tan™ {(du (£))} =2 tan (0w (Bo)) '} |(2.20)
kL U+en@) U+ on (@) ]

From this equation, u., can be obtained if the wind at the lowest level of observation (2m.
at Kansas) is substituted for u. Initially, the value of z; is unknown. Therefore, the
difference in the wind speeds at the two lowest levels of observation (2m and 4m at
Kansas) is considered for evaluating the value of u..  The function

dm( &) is also evaluated at these two levels. With this value of u. , the roughness height
can be computed as shown in the next section. In the same way, substituting the
expression for ¢u(£) from Eq.(2.10), in Eq.(2.19b) and integrating with respect to &, we
get the difference between the temperatures at a height z and at the roughness height zgr
for temperature, as follows:

[ (ouEo)—vs  OuE)+vall
AT = v, T.|In 4 . F

L 9uo)+vs  du@) -va)l

In this case also, initially, the temperatures at the two lowest levels of observation are
considered for evaluating T. ~ With this value of T., the roughness height for
temperature is computed, as shown in the next section.

.21)

Stable Case:
Substituting the expression for ¢y (€), as given mm Eq.(2.13), in Eq.(2.18a) and
integrating with respect to &, we get the analytical expression for the wind at any height
z, as follows:

wl (&) ]
u= —|Im—*t +y E-&) | (2.22)
kL (&) J

Similarly, by substituting the expression for ¢u(£), as given by Eq.(2.13), in Eq.(2.19b)
and integrating with respect to &, we get the expression for the temperature difference
between the height z and the roughness height for temperature zor, as follows:

[ (g ]
AT = Tl ysln{—+F +7ys (E - &) | (2.23)
L& J

As in the unstable case, the initial values of u. and T., are obtained by considering the



wind speeds and temperatures at the two lowest observing levels.

(d) The roughness heights z , and zr

The roughness heights for both, momentum and temperature, are obtained by iteration.
In the case of momentum, an initial guess value for z, is substituted for & in Eq.(2.20)
or Eq.(2.22), depending upon stability. The new value for u. is obtained, by considering
the wind speed at the lowest height (2m.) only. If this value of u. is greater than the
initial value, then the value of z, is altered by a small amount and the entire process
repeated, until the new value of u. is equal to, or lesser than the initial value. At this
stage, the value of z, gave the required roughness height. The above operation follows
from the fact that, very close to the surface, the stress can be considered constant and
equal to its surface value.

Next, the temperature difference, AT, between the temperatures at heights of z, and
z1, is computed from Egs.(2.21) or (2.23), depending upon stability. The temperature at
7 is obtained from the relation:

T(zg)= T, - AT, (2.24)
The roughness height for temperature is obtained from the assumed relation :
In(zy / zo7) = 2.2 (2.25)
The above relation was found to be valid by several authors, e.g. Garratt and Pielke

(1989).

We now attempt to find a factor, n, which when multiplied by AT, gives the difference
between the true surface temperature, i.e. the temperature at z = zyr and temperature at z
=z,. An initial guess for 7 is made and the corresponding temperature difference AT,
is inserted in Eq.(2.21) or Eq.(2.23), to obtain the value of T.. If this value is less than
the initial value of T., then 7 is altered and the process repeated, until the value of T.. is
greater than, or equal to, its initial value. The surface temperature is computed as
follows:

Tg= T;- AT, (2.26)

(e) Surface Heat Flux

The surface heat flux, H, s obtained from the following expression:

= —pckuT. (2.27)
in units of Wm™. The observed 15-min. averaged values of heat fluxes were obtained
from the covariances [w'u'], which were measured by fast-response sensors mounted at
5.66m., 11.31m., and 22.63m. The heat flux at a height of 5.66m. was converted to units

of Wm™ for comparison with the computed values.

(f) Depth of the surface boundary layer and coefficient of eddy viscosity K

The stress at a particular height z is given by the following relation:

1=p Ky (Ouw/oz) (2.28)
Expressing ( 6wz ) in terms of the function ¢pm(E), from Eq.(2.18a), we get
e = Kn ¢m(E)/E (2.29)

where t=pu.’ andKy = Ky/ (kw.L)

The SL is defined as the layer close to the surface where the stresses are almost constant
with height. If we define the top of the SL as the height where 1t/19 =8, O being a
fraction close to one, then it is possible to solve Eq.(2.39) and obtain the depth of the
SL, provided the value of Ky is known. Zilitinkevich and Laykhtman (1965), have



10

expressed Ky for unstable stratification as follows:

Ky=1-y" (2.30)
where y is a non-negative variable related to & as follows:
E=2y - 2y/3 -413 (2.31)

Starting with a guess value for y in Eq.(2.31), we solve Eq.(2.30) by the Newton-
Raphson method until the appropriate value of £ is obtained, from which the depth of
the SL is computed. The depth of the SL can also be computed from the empirical
relation :
hy=-(ni L /%) (1 -Ri) (2.32)

In stable stratification, certain empirical relationships are assumed between & and ¢y
at the top of the SL, for two categories of turbulence. The turbulence characteristic is
defined in terms of the Ri-number. The two categories of turbulence are defined as
follows:

0.04< Ri<0.19 &= 1/[om(®)] (2.33a)

Ri<004 E&=1/7; (2.33b)
Eq.(2.33a) can be expanded to : y3* £° +2y;E2+& —1=0. This cubic is solved to
give the value of & at the top of the SL, from which the depth of the SL can be
evaluated.. The empirical expression for obtaining the depth of the SL is given by:

hy=L(1-Ri)/ys 0.04< Ri<0.19 (2.34a)
hy=L((1-Ri)/ys/ys Ri<0.04 (2.34b)

Figure (5a) shows the varnation of the ratio (h/h;) with Ri-number. This ratio is close to
unity, except for values of Ri-number close to zero..

Figure (5b) shows the variation of h with Ri-number and reveals a gradual increase in
the depth of the SL with the approach towards neutral stratification. The depths in
unstable stratification are much larger than in stable stratification.

The coefficient of eddy viscosity within the SL can also be obtained. In unstable
stratification, Eqs.(2.30) and (2.31) give the value of Ky at different values of z ,from
which the coefficient Ky can be obtained. Figure (6a) gives the vanation of Kyy with
height, for three different values of the Ri-number. It is seen that for stronger instability,
characterized by higher values of the stability length L and Ri-number, the slope of the
curve is lesser, indicating lower magnitudes of the eddy viscosity at a particular height.
In stable stratification, the value of Ky at any height z, is obtained from the equation: .

Ku= ku z/ ¢m(E)

The correctness of the computed values of Ky was checked with the observed values of
[u'w’] at a height of 5.66m. The value of Ky was converted to the stress form, using
Eq.(2.39), as follows:
[0'W Yoo = K 0 0(EY/ (k2) (236)

where z=15.66 and & is calculated for the same height Figure (6b) shows the variation
of the ratio of the computed stress to the observed stress, with &, all the parameters being
calculated for z= 5.66m. It may be seen that the mean value of the ratio is 0.876, which
is close to unity, suggesting that the computed values of 1/p are very nearly equal to
the observed values at z = 5.66m.

3. Discussion

(a) Displacement Height : The validity of the assumed expressions represented by
Eqgs.(2.3) and (2.5), is tested by considering the layers between the following heights: (1)
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2m to 4m (2) 4m to 8m. The Richardson numbers and also the constants C, and § are
computed for the two layers. The original versions of the expressions represented by
Eqs(2.3) and (2.5), which were used in this test, are as follows:

‘t’m(R—il)

=(1+5 |Rii )" *(1 +Riy) (Unstable) ... (3.1)
d’m(RjZ)
dm(R1)

= (¢u(Riy) + 8 Ri)/ ¢m(Riz) (Stable) ....... (3.2)
dm(Riz)

Here, Ri; and Ri; are the Ri-numbers in the lower and upper layer, respectively. At the
level of the Z; the function ¢u(Ri) can be taken as unity, which is the value used in
Egs.(2.3) and (2.5) and the same is the case for the factor (1 + Rip).

Figure 1, shows a plot between the ratio of the left hand side to the right hand side of
equations (3.1) and (3.2), and the Ri-number. It may be seen the ratio is very nearlyly equ
to unity for all values of Ri-number, thus confirming the validity of Eqgs. (3.1) d and (3.
and hence, equations (2.3) and (2.5), respectively.

Figure 2 shows the variation of Z; with Ri. In unstable stratification (-ve values of

Ri) the displacement height increases with an increase in Ri. An increase in Ri dicatesi 1
the tendency towards a less unstable stratification and thus, a decrease in the

intensity of turbulence and an increase in the turbulent velocity and length scales. In n stab
stratification, there is little variation of the displacement height with Ri.

(b) Profile function “constants” and turbulent Prandtl number: Figure(4a) shows the
variation of the factor “f” and the “constant” y4(GM4), with Ri . It is seen that vy,
increases with increasing Ri, whereas, “f” decreases with increasing Ri. At Ri=-
0.223, =1y, , suggesting that this value gives the critical Ri- number, which demarcates
the logarithmic regime from the diabatic regime in the SL.. Thus, in the range -0.223 <
Ri <0, the value of “f” can be directly obtained from the relation {|Ri |}/ f=1,
and the values of the “constants™ ¥y, ys, can be obtained from Eq.(2.19). The value of
o can also be directly obtained. Figure (4b) shows a plot between the variable
“constants”, y; and Y, as a function of Ri-number. It shows increasing values with
increasing Ri-numbers.

We now define a new parameter as: o; = Y /(y2 v4) and another parameter as : C=
{|Ri |}/ f. Figure (8a) gives a plot of the parameter C ‘and - the product oy+C -
TPr, against the Richardson number. It may be seen that at the value Ri =-0.223,

both C and the product parameter have the same value of unity, suggesting that at this
value of Ri the parameter o can be expressed as the inverse of TPr. It is known that o
is equal to the inverse of the TPr in a logarithmic boundary layer and therefor, a; = « at
this value of Ri-number, which also marks the beginning of the logarithmic boundary
layer regime. For higher values of Ri ( lower magnitudes of Ri ), the two curves almost
coincide with each other, indicating the validity of the equality a,= o« = 1/TPr. For
lower values of Ri (higher magnitudes of Ri), in Figure (8a), the parameter C
decreases, whereas the product parameter remains almost constant at a value very close
to unity, suggesting that in this region of stability, C gives the deviation from the
logarithmic condition

Figure (8b) gives the variation of TPr and the product (ay+ TPr ), with Ri- number. If
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we neglect the energy diffusion term in the turbulent kinetic energy equation, it can be
shown that the criterion for the existence of non-damping turbulence is given by: Ri <
TPr. It may be seen from the figure that this criterion is satisfied for |Ri| <0.4. Thus,
beyond this value of Ry, the turbulent kinetic energy gets damped. The turbulent Prandt]
number characterizes the convective motion in the turbulent convective layer in a fluid
and it gives the relative magnitudes of momentum and heat diffusivity. The figure shows
that TPr varies almost linearly with Ri-number, increasing towards lower magnitudes of
Ri. The eddy sizes are inversely proportional to the dominant wave numbers of
convection and mechanical turbulence and mechanical eddies are known to have smaller
wavelengths (larger wave numbers) than eddies produced by heating. Heat is transported
more efficiently by the larger eddies.

(c) Comparison of the solution, &, with the iterative method : The solution, ¢ is

also computed-iteratively, using Businger’s profile functions and constants, which had the
following constant values, viz.: y1= 16, ¥2-9, v3-4.7, v4- 0.74. The roughness heights
for momentum and temperature, were kept constant as zy = 2.4 cms. Figure (7a) shows
the variation of the ratio of the solution obtained by this method(SL), to that obtained by
the iterative method(SL1), with Ri-number,for unstable stratification. It is seen that the
ratio increases towards higher values of Ri-number. Figure (7b) shows the variation of
the ratio of a(ALP) , obtained by this method, to that obtained by the iterative
method(ALP1), with Ri-number. This ratio also increases towards higher values of Ri-
number. In the case of stable stratification

the vanation of the solution ratios are not smooth as in the previous case, but show
discontinuities at the boundaries where the stability regimes changes by definition. For
values Ri > 0.2, the iterative solution does not converge and measurements in the
atmosphere made by several authors, indicate that turbulence is not found above a value
of Ri=0.2.

(d) Comparison of the friction velocity , surface heat flux and Monin-Obukhov Stability

length with observed values : The parameters u. H and I. were computed and compared
with the observed values. The 15-minute averaged covariances [u'w'] and [6'W'] from
the fast response sonic anemometer at a height of 5.66m., were used for computing the
observed values of u.. H and L. These parameters were also computed by the Direct
solution method and Businger’s profile functions, using his constants. The fractional
percentage departure of the computed values from the observed values were computed as
follows :Error(ustf={u.—  (Ue)obs}/(Ws)obss100 Error(ol)={L—~L)es }/(L)obs +100,
Error(hf)={H-(H)ovs }/(H)ows +100. Figures (9a,b,c) give a plot of these percentage
departures as a function of the Ri-number, for the direct solution method. It may be seen
that the percentage departures are distributed about the zero value, with a slight weight
towards negative departures in the case of friction velocity and heat flux, indicating that
the computed values are underestimated in comparison with the observed values in more
cases. This may be due to the fact that the covariances are more pronounced at a height
of 5.66m. than at the height of 2m. or 4m. and, therefore, the fluxes computed from these
covariances tend to give higher values than those computed by the direct solution
method.  Similar fractional percentage departures were also computed by using
Businger’s iterative solution method and the logarithm of the ratio of the departures by
the direct method, to this method, were computed. Figures (9d.e,f) give a plot of this
ratio, as a function of Ri-number. Negative values of the ratio indicate that the
percentage departures by the iterative method is larger than those obtained by the direct
method. Both the methods appear comparable in regard to the percentage departures
from observed values.
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(e) Comparison of wind and temperature profiles constructed from computed surface
parameters :  Fhe values of L, u. and T., computed by this method and by the iterative
method using Businger’s constants, were used to construct the vertical profiles of wind
and temperature. The computed values at each standard height, were compared with the
observed values at that height and the “difference” computed. The difference is
expressed as a percentage of the observed values. The mean wind and temperature
differences were computed for each level of observation and for each method of
computation. Method A is the direct solution method, method B is Businger’s iterative
method with vanable values of the surface roughmess parameters for wind and
temperature, respeetively, while method C is also Businger’s iterative method , but with
fixed values of the surface roughness parameters. In method C, the roughness parameter
for wind and temperature are given the same value. The percentage differences for wind
are expressed by ERRU(A), ERRU(B), ERRU(C), for each of the aforesaid methods
AB,C respectively, whereas the temperatures differences are expressed by TERR(A),
TERR(B), TERR(C). Figure (10a) gives the mean percentage wind differences for each
level of observation and for each method, along with the associated standard deviations.
The computed values are for unstable stratification and for those data samples for which
the level of observation is within the surface layer, i.e. the ratio SLH/Z > 1, where SLH
indicates the height of the surface boundary layer and Z is the height of the observation
level. The observation levels are at heights of 2m, 4m, 8m, 16m, 22.63m and 32m.
respectively. It is seen that the relative percentage differences and the respective
standard deviations are slightly larger in method C, as compared with the other methods.

Figure (10b) shows the same parameters for the percentage temperature differences. The
mean differences and the respective standard deviations appear to be almost the same for
all the three methods, suggesting the insensitivity of the variable profite “constants” and
the roughness parameters to change the temperature profiles, in the statistical sense. The
computed surface temperatures probably adjusts to the variable profile constants and
roughriess parameters, to yield almost the same vertical profile.

Figure (11a,b) show the same parameters for unstable stratification, but in the case,
where the height of the observation level is greater than the height of the surface layer, i.e
SLH/Z < 1. Itis seen that the mean percentage differences at each level of observation,
for both wind and temperature, are much higher compared with the values in Figure
(10a,b), except for method C, where no significant change is noticed. The standard
deviations are also much higher in methods A and B, respectively. It is known that the
similarity hypothesis is sirictly valid in the surface boundary layer only and the larger
percentage differences between the observed and the computed parameters in the range
beyond the height of the surface boundary layer, is a reflection of this fact. It is probable
that the height of the SL, as computed in methods A and B, may not be vahd for method
C and so the parameters computed by the application of the similarity theory, do not
show any significant change beyond the computed value of the SL height.

Figure (12a,b) show the same parameters for stable stratification and for the condition
SLH/Z > 1. In this case, the mean percentage differences for wind and temperature, are
nearly the same for methods A and B, but show much higher values for method C. The
standard dewviation also follow the same pattern. Figure (13ab) show the same
parameters for stable stratification., but for the condition SLH/Z < 1. It is seen that the
mean percentage differences are mmuch higher for all the methods, as compared with
Figure (12,a,b). The standard deviations are also very large. The stable SL appears to be
very sensitive to the SL height, which is nof continuous, as in unstable stratification, but
has discontinuities at the boundaries of each stability range.
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4. Conclusien

The present model gives a very simple and accurate method of computing the M-O
stability length, using data at two levels only. Since all the other parameters in the SL are
some functions of the non-dimensional parameter (z/L), they too can be computed easily
and accurately. The importance of computing the roughness heights for momentum and
temperature for each data set, is highlighted in this model, when it was shown that the
percentage differences from observed values came down appreciably, while using
Businger’s method, after the roughness heights were made variable, in method B, for the
computation of wind profile. The model brings out an objective method for computing
the displacement and the roughness heights from observed data. The criterion for
evaluating the depth of the SL has also been developed, which will help in deciding the
boundary beyond which the M-O similarity hypothesis is not applicable. As this model
gives the solution directly, the problem of convergence does not arise and considerable
time is saved compared with the method of iterations. This model can also compute the
vertical profile of wind and temperature accurately, using only the data obtained at the
two lowest levels.
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APPENDIX - 1

Equation (2.11)is ofthe form: ax’ +bx*+ cx +d=0,

Wherex=E ;a=% : b=~1 ;e=9C> : d=G}

Applying the substitution , ax =y - b/3 , the above equation can be reduced to the form:
y +py+q=0 ...(A1)

where  p=-1112CE-13; q= (p+ 13X 1B -n)-227 ... (A2)
Eq.(Al) can be solved analytically by Cardano’s method. Let V = (q/2)* + (p/3)’, where
“q” is positive and “p” is negative. A real solution of Eq.(A1) exists only if V> 0. The
appropnate values of “p” and “q” have to be sought, which will satisfy this condition. A
factor “f” is defined as:
f= f5/(1.0+ Ri), where “fp” is a constant representing the value of “f” when Ri =0,
1.e. neutral stability. It also represents the mmimum value of “f”. Let s= 1/3 — (y,/72)
and “ q ” be represented by: q=-fp, then from Eq.(Al) we get:

s=(-fp+22N(p +1/3)

Hence, yi/yv: = 1/3 -5 (A3)
And 1y =-(p+13YC2 oo (AD)

It is evident that for a given value of “p”, “f;” gives the minimum value for “s” and
therefore, the minimum value for the ratio (y, / v ), because “s” is negative. Hence, in
order to evaluate “fy”, the condition for this ratio to be minimum has to be derived. The
optimum value of “p” has also to be chosen, which satisfies the condition, V> 0.

If al = R/ and a2 = ¢y (&) [om{E)F, then Eq.(2.9)is satisfied if a2/al = 1. Figures
(3a) shows the values of V, for various values of “p”, for two values of Ri-numbers,
viz., Ri=0.05 and Ri=0.2, respectively. It may be seen that V is maximum for a
particular value of “p”, for each value of the Ri-number. We now define a factor “X”,
which is multiplied to f2 to give the magnitude of “p”. Figure (3b) gives a plot between
“X”and V, which is computed from the relation p=X.f*

It is seen that ¥V (DEL) is maximum for X=4.5, for each value of Ri-number. This
condition can also be obtained mathematically, as shown below.

Now, V= £p*/4 +p*/27; &Viep=f2p/2 +p*/9
The condition for maximum/minimum value of V is givenby: 0V/dp =0, which
gives the value of “p” as: p= —4.5f? (A5)

Fv/op’= £/2+2p/9. Substituting the value of “p” given above in this equation,
we get the RH.S. as: —f*/2, which shows that this value of “p” gives a maxima for the
value of V, given by:

V= 27f%16 (A6)

Substituting this value of “p” in Eq.(A3) and differentiating with respectto “f”, we

obtain the condition fer the minimum value of the ratio (y; /¥.2) as: '

243f%-54f -8=0 (A7) Solving
this equation by Newton-Raphson method, we get the minimum value of “f’as: f;=
0.5329. From Eqs.(A3) and (A4) we get :
1= v (4.5 3+ 1.5€2-1/27)"2 / [Ri| (A8)
If we choose the value of y; such that: .



[va]'= [45f +15f2- 127" (A9)
Then 11 = 1/RRi| (A10)
And v2= [4.5 2 - 1/3}ys* /Ri (A1)

The “constants” in Businger’s profile functions are now expressed as functions of the
Richardson’s number. Figure (4a) shows the vanation of y; and the factor “f ”, with
Richardson’s number. It may be seen that while the value of 7y, increases with increasing
vatues of Ry, the value of “f™ decreases. y4 is proportional to the turbulent Prandtl number
(TPr), which is known to increase with decreasing turbulence and approaches umity as
the stability tends towards the neutral state. The factor “f ™ decreases from a value close
to unity, for very low values of Ri - number, to the value f; as the neutral state is
approached. The two curves intersect at Ri ~ -0.223. Figure (4b) shows a plot between
the variables y; and y, and the Ri — number. The plot shows increasing values of y; and
¥, with increasing of Ri — number. The solution of Eq.(Al) is given as follows:
y = u—- p/3u (A12)

where u= [-g2 +V? 1"

Substituting the appropriate values of “q”, “p” and V, in terms of the factor “ f”, we get:
{3V3-9}"
u=f——uw— =-09834f

411"3

y= —2.5087 f
E=(y+13)n

Substituting the values of ail the parameters in the R.H.S. we get the final solution as:
£= |RilRi/3 - 1)/(1 +Ri) (A13)




Legends of the Figures

Figure (1) : Ratio of the L.H.S. to the R H.S. of the Egs.(3.1) and (3.2), respectively,
against Ri-number

Figure (2) : Varation of the displacement height, Z4, with Ri-number

Figure (3a) : Varnation of “V” (DEL), with “p”, for Ri =-0.2 and Ri = -0.05

Figure (3b) : Variation of “V” (DEL), with the factor “X”, in p=-Xf? for Ri=-
0.05 and Ri=-0.2

Figure (4a) : Vanation of the “constant” 7y, (GM4) and the factor “f ™ ,with Ri-
number

Figure (4b) : Variations of the “constants” y, (GM1) and y, (GM2) with Ri-number
Figure (5a) : Variation of the ratio of the depth of the SL (h), obtained from the
solution of the relevant equation, to the depth obtained from the empirical equation, (h1),
with Ri-number

Figure (Sb) : Variation of the scaled depth of the SL, obtained by the solution of
the relevant equation, with Ri-number

Figure (6a) : Variation of the coefficient of eddy viscosity, K, with height in
unstable stratification, for three vatues of Ri-number

Figure (6b) : Variation of the ratio of the computed surface stress to the observed
stress measured at 5.66 m., with &

Figure (7a) : Variation of the ratio of the solution £ obtained by this method to the

solution obtained by the iterative method using Busiger’s constants
Figure (7b) : Vanation of the ratio of “a” (ALP) obtained by this method to that
(ALP1) obtained by the iterative method using Businger’s constants.

Figure (8a) : Vanation of the parameters C, the prodnct C*o * TPr, and TPr, with
Ri-number in unstable stratification

Figure (8h) :  Vanation the turbulent Prandtl number and the product o,;* TPr ,
with Ri-number in unstable stratification

Figure (9a) : Vanation of the percentage difference of “us” ,with Ri-number
Figure (9b) : Varation of the percentage difference of “L”, with Ri-number
Figure (3¢) : Vanation of the percentage difference of “H”, with Ri-number
Figure (9d) : Vanation of the logarithm of the ratio of the percentage difference of
“us” , computed by the direct method to that computed by the Businger’s iterative
method, with Ri-number

Figure (9%¢) : Same as in Figure (9d), but in respect of the stability length “L”
Figure (91) £ Same as in Figure (9d), but in respect of the heat flux “H”.
Figure (10a) 2 Variation of the mean percentage difference of the wind
computation at each data level, from the observed values at that level, for each method of
computation, for unstable stratification. A — direct solution method. B - Businger’s
iterative solution with vartable roughness heights for momentum and temperature. C —
Businger’s iterative solution with fixed roughness parameters. The vertieal lines indicate
the standard deviations. The condition h/z > 1 holds.

Figure (16b) : Same as in Figure (10a) , but for temperature

Figure (1Ia,b) : Same as in Figure (10ab), except for the condition h/z < 1
Figure (12a3,b) : Same as in Figure (10a,b), for stable stratification.

Figure (13a,b) : Same as in Figure (11a,b), for stable stratification
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