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Abstract

Continuous periodogram power spectral analysis of daily incidence of
acute myocardial infarction (AMI) reported at a leading hospital for
cardiology in Pune, India, for the two-year period June 1992 to May 1994
show that the power spectra follow the universal and unique inverse
power law form of the statistical normal distribution. Inverse power law
form for power spectra of space-time fluctuations are ubiquitous to
dynamical systems in nature and have been identified as signatures of
self-organized criticality. The unique quantification for self-organized
criticality presented in this paper is shown to be intrinsic to quantumlike
mechanics governing fluctuation (space-time) patterns in dynamical
systems.

Running Title : Self-Organized Criticality and Acute Myocardial Infarction

1. INTRODUCTION

The daily incidence of acute myocardial infarction (AMI) during the two-
year period June 1992 to May 1994 was obtained from admission records
of a premier Institute of cardiology at Pune, India. Continuous
periodogram power spectral analysis of the data show a broadband
spectrum with embedded dominant wavebands, the bandwidth increasing
with period length. Broadband spectra for fluctuations are ubiquitous to
dynamical systems in nature“, such as atmospheric flows, stock market
price fluctuations, population growth, spread of infectious diseases, etc.
The broadband power spectra exhibit inverse power law f © where f is the
frequency and s the exponent. Inverse power law form for power spectra
imply long-range (space-time) correlations. Long-range spatiotemporal
correlations are ubiquitous to dynamical systems in nature and are
identified as signatures of self-organized criticality’>. The physics of self-
organized criticality is not yet identified. Atmospheric flows exhibit self-
organized criticality manifested as the selfsimilar fractal geometry to the
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spatial pattern concomitant with inverse power law form for spectra of
temporal fluctuations, documented and discussed in detail by Lovejoy and
his group®” . A recently developed cell dynamical system model for
atmospheric flows predicts the observed self-organized criticality as
intrinsic to quantumlike mechanics governing flow dynamics®*'® . The
model predicts the universal inverse power law form of the statistical
normal distribution for the power spectrum of fluctuations thereby
providing universal quantification for self-organized criticality. The model
is based on the concept that cumulative summation (integration) of small
scale fluctuations give rise to large scale perturbations generating a
hierarchical network, the generation mechanism being dependent only on
the intensity of fluctuations and independent of the detailed mechanisms
governinq the fluctuations. The model is therefore a general systems
theory*?' applicable to all dynamical systems in nature. The model
concepts are applied to show that daily incidence of AMI, probably
triggered by stress-free and stressful activity cycle corresponding
respectively to sleep-wake diurnal (night to day) activity rhythm self-
organizes to form a broadband spectrum for temporal fluctuations, with
universal inverse power law form of the statistical normal distribution.
Daily incidence of AMI exhibits self-organized criticality with model
predicted unique quantification in terms of the statistical normal
distribution. Quantumlike mechanical laws may therefore govern
fluctuation pattern of AMI incidence.

2. MODEL CONCEPTS
In summary®'® | the model is based on Townsend's® concept originally
proposed for growth of large eddy structures visualized .as envelopes
enclosing internal small scale eddy circulations in atmospheric flows. A
hierarchical eddy continuum is generated by successive cumulative
integration of internal small scale fluctuations, the eddy growth process
being dependent only on the intensity and length/time scale of fluctuations
and independent of details of mechanisms generating the fluctuations.
Large scale fluctuations of intensity W* and length scale R result from
integration of enclosed small scale fluctuations of intensity w.” and length
scale r given by the relation

Wt (1)

= R

The fluctuations self-organize to form a hierarchical eddy continuum.
Since the intensity W? at any large scale is the cumulative integration of
enclosed small scale eddies of intensities w.?, the eddy energy spectrum
follows the statistical normal distribution. The square of the eddy
amplitude represent the probability. Such a result that additive amplitudes
of eddies, when squared, represent probabilities is observed in subatomic
dynamics of quantum systems. The growth of fluctuation pattern therefore
follows quantumlike mechanical laws. The above visualization for growth
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of large scale structures from small scale fluctuations result in the
following model predictions.

1)
2)

3)

4.

9)

The successive values of amplitude W and length scale R follow
the Fibonacci mathematical series.

The growth of fluctuation pattern follows an overall logarithmic
spiral trajectory OR;:R;R3;R4Rs with the quasiperiodic Penrose tiling
pattern for the internal structure(Fig. 1). The amplitudes of
fluctuations for successive growth stages follow the logarithmic
relationship.

Wa

W=—InZ (2)
k
where Z is the scale ratio equal to R/r and k is the steady state
fractional volume dilution of large eddy by turbulent eddy
fluctuations.
The logarithmic spiral can be resolved as an eddy continuum with
embedded dominant wavebands R,OR4,R{OR;R;0R;, etc. the
peak periodicities P, being given by
P,=1"(2+1)T (3)
where 1 is the golden mean equal to (1+v5)/2 (+1.618) and T is the
diurnal trigger such as the sleep - wake/night - day cycle
associated with stress-free and stressful activity rhythms.
The angular turning d@ for successive stages in growth of the
logarithmic spiral trajectory is given fro Eq.(1) as
do = _ (4)
R
The phase angle 6 at any stage of growth is therefore proportional
to the variance from Eq.(1)

0 « W (5)
The phase spectrum will therefore represent the variance
spectrum. 5

The successive growth stages of the logarithmic spiral trajectory
may therefore be visualized, particularly in traditional power
spectrum analysis, as a continuum of eddies with progressive
increase in phase.

The association between phase angle, variance and length scale
as obtained above at Egs.4 and 5 are intrinsic to the microscopic
dynamic of quantum systems and has been identified as Berry's
phase %

The root mean square (r.m.s.) amplitude of fluctuations W and w.
(Eq.2) represent the standard deviation and also the mean, since
each level represents the mean for next stage of eddy growth. The
standard deviation of the fluctuations is therefore represented by
log Z where Z is the scale ratio representing the ratio of
frequencies( or pericds or wavelengths).

The conventional power spectrum plotted as cumulative
percentage contribution to total variance versus the frequency (or
period or wavelength )on log-log scale will now represent the
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cumulative percentage probability on log scale versus the standard

deviation on linear scale since earlier (Eq.1) it was shown that

variance, i.e. W? distribution corresponding to log Z represents
probability densities and also that log Z represents the standard
deviation of the fluctuations (Eq.2).

Following traditional concepts in statistics, a normalized standard

deviation t for log Z distribution can be defined as

logL
t = - -1 (5)
log Tso

where L is the period in years and Te the period up to which the

cumulative percentage contribution to total variance is equal to 50.

Log Ts will correspond to the mean value for the variance W?

distribution which was shown to follow normal distribution (Eq.1).

The power spectrum when plotted as cumulative percentage

contribution to total variance versus log Z expressed in terms of

the normalized standard deviation t (Eq.5) will represent the
statistical normal distribution.

The above model concepts are dependent on the amplitude W of
fluctuations of length (or time) scale R alone and totally independent of
the detailed mechanisms underlying the fluctuations. The model predicts
that temporal (or spatial) fluctuations of dynamical systems in general self
-organize to form the universal inverse power law form of the statistical
normal distribution (Egs 1 - 6).

3. DATA AND ANALYSIS
The daily incidence of acute myocardial infarction (AMI) for the two
year period June 1992 to May 1994, was obtained from admission records
of a premier Institute for Cardiology at Pune, India. The power spectrum of
AMI incidence (daily) was computed by an elementary but very powerful
method of analysis developed by Jenkinson” which provides a quasi-
continuous form of the classical periodogram allowing systematic
allocation of the total variance and degrees of freedom of the data series
to logarithmically spaced elements of the frequency ranges (0.5, 0). The
peridogram was constructed for a fixed set of 70000(m) periodicities
which increase geometrically as L, = 2 exp (Cm) where C = .001 and
m=0,1,2,.... m. The data series Y, for the N data points were used. The
periodogram estimates the set of A,cos (27vat - ¢m) Where A, v, and ¢y,
denote respectively the amplitude, frequency and phase angle for the m”
periodicity. The cumulative percentage contribution to total variance was
computed starting from the high frequency side of the spectrum. The
period Tso at which 50% contribution to total variance occurs is taken as
reference and the normalized standard deviation t,, values are computed
as (Eq.6).
tm = (log L, / log tg) = 1 (7)
The corresponding phase spectrum was computed as the cumulative
percentage contribution to total rotation, i.e. normalized with respect to
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total rotation. The variance spectrum, phase spectrum and the statistical
normal distribution plotted respectively as cumulative percentage
contribution to total variance, cumulative percentage contribution to total
rotation and cumulative percentage probability are shown in Fig. 2.

It is seen that variance and phase spectra follow each other closely
and also the statistical normal distribution. The “goodness of fit" of
variance spectrum and phase spectrum to statistical normal distribution is
within 85% level of significance as determined by the standard statistical
chi-square test™. .

The dominant wavebands identified as those for which normalized
variance is greater than or equal to 1.0 are shown in Fig. 3a plotted in the
conventional manner, i.e. normalized variance versus logarithm of period
in days. Fig. 3b shows the cumulative percentage contribution to total
variance and cumulative normalized phase for each dominant waveband.
The peak periodicities corresponding to each dominant waveband is listed
in Table 1.

4. DISCUSSION AND CONCLUSIONS
A general systems theory for self-organization of fluctuations gives

following model predictions. Space-time integration of small-scale

fluctuations give rise to an overall logarithmic spiral trajectory with the
quasiperiodic Penrose tiling pattern for the internal structure. The
logarithmic spiral trajectory can also be resolved as an hierarchical eddy
continuum with progressive increase in phase. The eddy continuum has
embedded in it dominant wavebands, the bandwidth increasing with
period length. The dominant peak periodicities are functions of the golden
mean and the primary triggering cycle of stress - free and stressful activity
cycle associated with sleep - wake (night to day) rhythm. Since cumulative
integration of enclosed small scale fluctuations results in large scale
fluctuations, the eddy energy spectrum follows inverse power law form of
statistical normal distribution according to Central Limit Theorem. The
square of the eddy amplitude or, the variance represents the probabilities.

Such a result that additive amplitudes of eddies, when squared, represent

probability densities is observed in the subatomic dynamics of quantum

systems such as the electron or photon. The dynamics of fluctuation

pattern formation therefore follows quantumlike mechanical laws.
Continuous periodogram power spectral analysis of daily incidence

of acute myocardial infarction for the two-year period June 1992 to May

1994, reported at an Institute for Cardiology in Pune, India show that the

following dynamical characteristics of AMI variability are consistent with

model predictions summarized above.

(1) The spectrum is broadband with embedded dominant wavebands,
the bandwidth increasing with period length (Fig. 3).

(2) The dominant peak periodicities (Table 1) closely correspond to
model predicted values (Eq. 3) 2.24, 3.62, 5.85, 9.47, 15.33, 24.80,
40.13, 64.92 corresponding respectively to n values ranging from -
1to 6.
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(4)
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The spectrum follows the universal power law form of statistical
normal distribution (Fig.2) which signifies (a) quantumlike
mechanics for the dynamics of AMI incidence (b) long-range
temporal correlations, or fractal structure to temporal fluctuations,
namely self-organized criticality °.

The phase spectrum closely follows the variance spectrum, for the
total spectrum and also within each dominant waveband (Figs. 2 -
3). The close association between phase, variance and period
length is a feature intrinsic to quantum systems and identified as
“Berry’s phase">®,

Self-organized criticality, namely long-range spatiotemporal

correlations exhibited by dynamical systems in nature, is a signature of
quantumlike mechanics governing the dynamics of space-time pattern
evolution. Universal spectrum of AMI day to day variability implies
prediction of total pattern of fluctuations.
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Table 1

Dominant peak periodicities (days)

2-3 days |
2.006 202 2030
2
2.128 215 2158
1
2.301 2.32 2,352
6
2.517 2.54 2.565
8
2.689 205 EIET
5
2.963
3-4 days |
3.035 3.06 3.081
5
3.307 3.35 3.418
7
3.714 3.78 3.866
5
4 -6 days |
4.101 417 4.209
5
4.880 5.04 5.079
4
5.750 5.97
2
6 - 12 days |
6.099 6.45 6.574
0
8.569 8.85 8.990
6
10.763 11.8
85
12 - 20 days |
12.124 142 15508
56
20 - 30 days ]
23.598 29.9
69
30 - 50 days |
32.367 359
31
50 - 80 days |
64.531*
120 - 200 days |
162.739
200 - 300 days |
245.709

2.042
2.188
2.373
2.578

2.785

3.148
3.439

3.916

4.268

5.151

6.694

9.13%

16.186

2.055
2.199
2.411
2.623

2.810

3.181
3.484

3.564

4.394

5.208

7.023
9.357

16.763

2.067
2217
2.440
2,636

2.824

3.197
3.544

3.991

4.514

5.388

7.251

9.499

17.657

2.082
2.228
2.448
2.649

2.838

3.213
3.576

4.550

5.535

7.442

8.652

18.712

2.090
2.246
2.460
2.660

2.901

3.248

3.604

4.586

5.636

7.669

9.916

19.436

2122
2.280
2.477
2.673

2.833

3.274

3.688

4.670

5.687

8.441

10.383

Periodicities significant at or less than 5% level are given in bold letters.
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Legend

Figure 1. The quasiperiodic Penrose tiling pattern

Figure 2. Variance and phase spectra.The statistical normal distribution

is also shown in the Figure.

Figure 3a. The power spectrum plotted as normalized variance versus
period (days) for dominant wavebands(normalized variance
>=1.0).

Figure 3b. cumulative percentage contribution to total variance versus
cumulative normalized phase for each dominant waveband,

demonstrating Berry’s phase.
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POWER SPECTRUM

Acute Myocardial Infarction June 1992 - may 1994, Pune
Daily incidence
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